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Figure 1: Our method takes as input depth and aligned RGB images from any consumer depth camera (here a PrimeSense Carmine 1.09).
Per-frame and in real-time we approximate the incident lighting and albedo, and use these for geometry refinement. From left: Example
input depth and RGB image; raw depth input prior to refinement (rendered with normals and phong shading, respectively); our refined result,
note detail on the eye (top right) compared to original depth map (bottom right); full 3D reconstruction using our refined depth maps in the
real-time scan integration method of [Nießner et al. 2013] (far right)

Abstract

We present the first real-time method for refinement of depth data
using shape-from-shading in general uncontrolled scenes. Per frame,
our real-time algorithm takes raw noisy depth data and an aligned
RGB image as input, and approximates the time-varying incident
lighting, which is then used for geometry refinement. This leads to
dramatically enhanced depth maps at 30Hz. Our algorithm makes
few scene assumptions, handling arbitrary scene objects even under
motion. To enable this type of real-time depth map enhancement,
we contribute a new highly parallel algorithm that reformulates the
inverse rendering optimization problem in prior work, allowing us
to estimate lighting and shape in a temporally coherent way at video
frame-rates. Our optimization problem is minimized using a new
regular grid Gauss-Newton solver implemented fully on the GPU.
We demonstrate results showing enhanced depth maps, which are
comparable to offline methods but are computed orders of magnitude
faster, as well as baseline comparisons with online filtering-based
methods. We conclude with applications of our higher quality depth
maps for improved real-time surface reconstruction and performance
capture.
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1 Introduction

Consumer depth cameras have opened up many new real-time ap-
plications in the field of computer graphics and vision, robotics and
human-computer interaction; including gestural interfaces, live 3D
scanning, augmented reality, and robot navigation. However, the
noise and resolution limitations of even recent depth cameras, re-
sult in only coarse geometry acquisition per frame. The ability to
capture higher fidelity geometry in real-time could open up many
new scenarios, such as tracking detailed features of the user (e.g.,
facial expressions, clothing etc.) for real-time performance capture
or other interactive scenarios, as well as the ability to scan higher
quality 3D models of real-world objects.

As shown previously, input from a stereo camera and shape-from-
shading (SfS) can be used to capture detailed models with results
approaching laser scan quality [Wu et al. 2011; Han et al. 2013; Yu
et al. 2013; Beeler et al. 2010]. This raises the question: can this type
of shading-based refinement be used to improve depth camera data,
only by leveraging an additional RGB camera, which most sensors
typically provide. Unfortunately, shading-based refinement tech-
niques require information about the incident lighting and surface
material in the scene. In most cases this requirement is fulfilled by
making assumptions about albedo, and by working with controlled
lighting [Hernández et al. 2008; Fanello et al. 2014], and studio
setups [Ghosh et al. 2011; Debevec 2012; Bermano et al. 2014].
When moving to general uncontrolled scenes, SfS methods thus
need to estimate albedo and illumination along with the geometry
by solving a complex inverse rendering problem [Wu et al. 2011;
Wu et al. 2013; Han et al. 2013; Yu et al. 2013]. So far, this was not
possible in real time, and as such refinement techniques have yet to
be used interactively.

Due to this performance bottleneck, researchers have developed
alternative heuristic fusion strategies to enhance depth camera data
in real time [Richardt et al. 2012]. Many of them use variants of
joint bilateral upsampling [Kopf et al. 2007] to lift the depth data to
the pixel grid resolution of a concurrently acquired and aligned RGB
image. While computation is fast, the results are based on a purely
heuristic assumption about the co-occurrence of discontinuities in
RGB and depth data. In consequence, reconstructions may look
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plausible but estimated detail may not be metrically accurate. Fur-
ther, the heuristic underpinning leads to commonly known artifacts,
such as texture copying, where spatial albedo variations are mistaken
for geometric detail.

In this paper, we propose a new real-time method for enhancement
of depth data using SfS in general uncontrolled scenes. Starting
from the raw depth data and an aligned RGB image, the algorithm
estimates – in real time – the time-varying incident lighting distribu-
tion, which is then used to considerably enhance the reconstructed
geometric detail. In contrast to previous fusion-based enhancement
approaches, our reconstructions are not only plausible but more
metrically faithful, and avoid some of the texture-copy artifacts seen
previously.

In order to refine a depth map based on the shading in real-time,
orders of magnitude faster than state-of-the-art offline systems [Wu
et al. 2011], we must redesign the shading-based energy function as
well as its optimization method. As such, we rephrase the shading-
based refinement problem to fully exploit the regular connectivity of
image grids. Instead of using an off-the-shelf conventional solver,
we introduce a novel patch-based Gauss-Newton solver running on
the GPU, which is specifically designed for our energy function.
This careful design choice enables the refinement of depth maps
in real-time, making it ideally suited to modern commodity range
sensors that run at ≥ 30Hz. Specifically, our algorithm provides the
following contributions:

• rephrasing the inverse rendering optimization problems used
in offline methods [Wu et al. 2011] in a highly parallelized
manner to enable real-time lighting estimation through spheri-
cal harmonics, and direct solving for refined depth rather than
displacements on 3D meshes.

• space-time coherent estimation of shape and lighting using
temporal correspondences derived from a real-time alignment
of depth maps.

• an adaptive shape refinement strategy that reduces texture-copy
artifacts by analyzing an approximate albedo image.

• a novel patch-based Gauss-Newton solver on the GPU to com-
pute metrically faithful geometry at real-time frame-rates.

Beyond these technical contributions, we show the versatility of
our method for reconstructing arbitrary scenes, even under motion,
and demonstrate improved accuracy compared to filtering based
refinement methods. We show integration into a real-time scanning
framework akin to KinectFusion [Newcombe et al. 2011; Izadi et al.
2011; Nießner et al. 2013], and show improved quality during real-
time capture. Finally, we demonstrate how our method enables
improvement of the spatio-temporal reconstructions of a recent live
non-rigid performance capture system [Zollhöfer et al. 2014a].

2 Related Work

Range Image Enhancement and Sensor Fusion Several meth-
ods to denoise and enhance depth data leverage the higher pixel
resolution of one or two concurrently captured RGB images. Most
of these methods rely on heuristic assumptions about the correlation
of color and depth, e.g., that edges in both channels likely coincide.

Diebel and Thrun [2006] compute the upsampled depth using a
Markov-Random Field. Park et al. [2011] formulate depth upsam-
pling to color image resolution as an optimization problem enforcing
the discontinuity similarity mentioned earlier, as well as additional
regularization terms. Implementing the above heuristics through
filtering is also feasible [Lindner et al. 2007], for instance by using
joint bilateral upsampling [Kopf et al. 2007]. Yang et al [2007] create

a cost space from the depth map, and filter it joint-bilaterally using a
stereo image to raise resolution. Similar ideas have been explored
for joint reconstruction using stereo images and depth data, where
photometric constraints from stereo can be exploited for further data
refinement [Beder et al. 2007; Zhu et al. 2008; Gudmundsson et al.
2008].

While the above methods run offline, variants of joint-bilateral or
multilateral filtering for depth upsampling can run in real-time [Chan
et al. 2008; Dolson et al. 2010; Richardt et al. 2012]. Their re-
sults, however, are merely plausible and not metrically accurate, and
texture-copy artifacts frequently occur when texture variations are
mistaken for geometric detail.

Multi-frame superresolution techniques estimate higher resolution
depth images from a stack of aligned low resolution images captured
under slight lateral displacement [Cui et al. 2013], but real-time
computation has not been possible so far. One final set of methods
increases the resolution of a single depth image offline using a
learned database of local patches [Aodha et al. 2012].

Shape-from-Shading and Photometric Stereo A related topic
acquires the 3D shape of an object using shape-from-shading (SfS)
where the naturally occurring intensity patterns across an image are
used to extract the 3D geometry from a single image [Horn 1975;
Zhang et al. 1999]. The mathematics of SfS is well-understood,
particularly when surface reflectance and light source positions are
known. Prados and Faugeras [2005] and Fanello et al. [2014] re-
construct various objects including faces, using controlled light
sources near the camera center. Ahmed and Farag [2007] demon-
strate geometry estimation for non-Lambertian surfaces and varying
illumination conditions, but make strong scene assumptions. Böhme
et al. [2008] use the near infrared image available on time-of-flight
(ToF) cameras to relate depth to intensity for filtering. However,
unlike our method, their approach is limited to only ToF cameras
with collocation of light source and camera, runs offline, and does
not increase the X/Y resolution of images.

Recent methods have shown that SfS can refine coarse image-based
shape models [Beeler et al. 2012], even if they were captured under
general uncontrolled lighting with several cameras [Wu et al. 2011;
Wu et al. 2013] or an RGB-D camera [Han et al. 2013; Yu et al.
2013]. To this end, illumination and albedo distributions, as well as
refined geometry are found via inverse rendering optimization.

While the physics of SfS is well known, the problem is inherently
ill-posed, and achieving compelling results requires strong scene
and lighting assumptions, and computationally complex algorithms,
particularly to solve hard inverse rendering optimizations. As such,
real-time performance has rarely been demonstrated. This has led
to work on photometric stereo where multiple images of a scene are
captured under different controlled illumination to compute geome-
try. Photometric stereo has demonstrated compelling reconstructions
of surfaces with complex reflectance properties [Mulligan and Brolly
2004; Hernández et al. 2008; Ghosh et al. 2011; Tunwattanapong
et al. 2013; Debevec 2012; Bermano et al. 2014; Nehab et al. 2005].
However, these approaches require complex controlled lighting se-
tups, which are not available in many standard scenarios.

More data-driven approaches for solving the SfS problem have
also been proposed. Barron and Malik [2013b] jointly solve for
reflectance, shape and illumination, based on priors derived statis-
tically from images. Similar concepts were also used for offline
intrinsic image decomposition of RGB-D data [Barron and Malik
2013a]. Zollhöfer et al. [2014b] use SfS to fit a morphable face
model to an RGB input stream. Our approach does not impose
strong priors on shape recovery. Khan et al. [2009] learn weight-
ing parameters for complex SfS models to aid facial reconstruction.



Figure 2: Overview of our main pipeline. From left to right: Input
to our algorithm is a noisy low resolution depth map (A) and an
aligned RGB image (B). From these, an initial estimate of illumina-
tion is found (C), and subsequently an albedo image is computed
(D), which is then used to detect an albedo edge map (E). There-
after, the coarse geometry is refined using shading information (F).
The high-dimensional non-linear optimization is solved using a new
GPU-based iterative Gauss-Newton solver.

Wei and Hirzinger [1996] use deep neural networks to learn aspects
of the physical model for SfS, demonstrating moderate results for
very constrained scenes. Again, none of these approaches achieves
real-time performance.

3 Overview

In our work, we demonstrate real-time shading-based refinement of
RGB-D data, captured in general scenes with unknown and time-
varying lighting, using only commodity hardware. To achieve this
goal, we reformulate the complex inverse problem for estimating
illumination, albedo and refined geometry, which so far has only
been solved offline, into a highly parallelized non-linear optimiza-
tion problem, which we solve efficiently on the GPU using a new
patch-based Gauss-Newton solver. We further employ new effective
approximations and parameterizations, as well as fast geometric cor-
respondence search on the GPU, which enables us to even enforce
temporal priors in our reconstructions.

Input to our algorithm is a noisy low resolution depth map Dr from
a depth camera and an aligned RGB image I . Unlike previous of-
fline methods that used multi-camera input to refine full 3D meshes,
we rephrase shading-based refinement as a depth map enhancement
process. We solve the inverse rendering problem using an effec-
tive parameterization of the shading equation (Sect. 4). From the
coarse depth and the RGB data, an initial estimate of illumination is
found (Sect. 4.1), and subsequently an albedo image is computed.
Thereafter, the coarse geometry is refined using shading information
(Sect. 4.2). The high-dimensional non-linear optimization problem
for depth refinement is solved using a new GPU-based iterative
Gauss-Newton solver (Sect. 5). Fig. 2 highlights these main steps in
the pipeline.

4 Shading-based Refinement of RGB-D Data

Real-time estimation of illumination and refined geometry necessi-
tates an efficient formulation of the light transport model, i.e., the
shading equation. Similar to previous offline methods, we assume
that surfaces in a scene are Lambertian, and we parameterize the
incident lighting with spherical harmonics (SH) [Wu et al. 2011].
In fact, we estimate incident irradiance as a function of the surface
normal, that is the incident light, filtered by the cosine with the
normal. For Lambertian reflectance, the incident irradiance function
is known to be smooth, and can be represented with only little error
using the first nine spherical harmonics basis functions up to 2nd
order [Ramamoorthi and Hanrahan 2001].

As with previous approaches, we henceforth estimate lighting from
a grayscale version of I , and thus assume gray lighting with equal
values in each RGB channel. In some steps, full RGB images are
used, which we denote Ic. Unlike offline multi-view methods, we
employ a triangulated depth map as geometry parameterization. This
means there is a fixed depth pixel to mesh vertex relation, and we
can express the reflected irradiance B(i, j) of a depth pixel (i, j)
with normal n(i, j) and albedo k(i, j) as:

B(i, j) = k(i, j)

8∑
k=0

lkHk(n(i, j)), (1)

where lk are the nine 2nd order spherical harmonics coefficients
of the incident illumination. Note that in our real-time setting, we
cannot afford local visibility computation, so illumination depends
only on the normal direction.

The spherical harmonics basis functions Hk(n) take a unit surface
normal n = (nx, ny, nz) as input, and evaluate to:

H0 = 1.0, H1 = ny, H2 = nz, H3 = nx, H4 = nxny,

H5 = nynz, H6 = −nxnx − nyny + 2nznz,

H7 = nznx, H8 = nxnx − nyny.
(2)

Solving for geometry, lighting, and albedo from a single RGB-
D image is highly underconstrained. During lighting estimation
(Sect. 4.1), we therefore initially assume that the scene has uniform
albedo. Subsequently, a dense albedo image is computed by dividing
the RGB values through the lighting term. High-frequency detail in
the depth map is then computed by shading-based refinement of the
per-pixel depth values (Sect. 4.2). Unlike previous SfS methods that
solve for surface normal orientations, we directly optimize the depth
by linking the depth to the normal. This is not only computationally
much more efficient, but also allows us to implicitly enforce surface
integrability during depth optimization.

4.1 Lighting Estimation

The illumination coefficients lk are computed by minimizing the
difference between the rendered image B (given our current lighting
estimate and geometry) and the captured RGB image I:

EL(l) =
∑

1≤i≤Nx,1≤j≤Ny

(B(i, j)− I(i, j))2 , (3)

where (Nx, Ny) is the image size. Solving this least-squares prob-
lem is equivalent to solving the following system of linear equations:

 H0(n(1, 1)) ... H8(n(1, 1))
H0(n(1, 2)) ... H8(n(1, 2))

... ... ...
H0(n(Nx, Ny)) ... H8(n(Nx, Ny))

 · l = A · l = I. (4)

The surface normals n(i, j) are computed from the depth map after
applying a Gaussian filter to remove noise. We exclude pixels at
grazing angles for lighting estimation, as both shading and depth
are unreliable in these regions. We detect these by checking if the
angle between normal and viewing direction is greater than 78◦.
For performance reasons, when the input RGB image resolution is
higher than 640 × 480, we downsample the image by a factor of
three in the lighting estimation stage.

The SH lighting coefficients are then obtained as l = (ATA)−1AT I .
For the calculation of ATA and AT I , we use a parallel reduction
and solve for the lk on the CPU. In order to stabilize the lighting



Figure 3: Left: Albedo estimation. input image and estimated
albedo map. Right: spatial neighborhood of geometric regularizer.

Figure 4: Adaptive refinement helps to reduce texture-copy artifacts:
the input frame (a) is refined and texture in the geometry of the shirt
may lead to erroneous detail. Using a high (b) or low (c) threshold
for albedo edge detection controls the reduction of this artifact.

estimation, we optionally add a temporal prior term λL(l − lp)2 to
Eq. (3), weighted by λL, which constrains the estimated lighting l to
be similar to the lighting lp in the previous frame. Then, the linear
system we need to solve is as follows:

ATA · l + λLMI = AT · I + λLl
p, (5)

where MI ∈ R9×9 is an identity matrix. An example illumination
environment map corresponding to l is shown in Fig. 2. Given l,
an estimate of a dense albedo image Ia with Ia(i, j) = k(i, j) is
computed on the GPU by dividing Ic(i, j) by

∑8
k=0 lkHk(n(i, j)),

see Eq. (1). Example albedo images are shown in Fig. 3.

4.2 Shading-based Depth Map Refinement

Given the estimated lighting and albedo image, we refine the coarse
depth through a second error minimization that uses shading cues
from the intensity image. Previous methods for shading-based RGB-
D refinement [Han et al. 2013] follow the traditional two-step SfS
strategy, i.e., they first estimate the normal field, and then use it to
refine the depth. Normal field computation for an image with N pix-
els requires optimizing an energy in 2N unknowns, and refining the
depth based on the normal constraint means solving another sparse
linear system with N variables. To achieve real-time performance
we choose a more efficient strategy, and directly optimize for the
depth value of each of the N pixels in I . This enables us to use the
regular image structure for efficient parallelism of our optimization.
Note that, depending on the camera, the physical depth resolution
may be lower than the RGB resolution; we always sample depth and
color at the same higher resolution.

To obtain the refined depth map D∗, we minimize:

E(D) =
∑
(i,j)

wgEg(i, j)+wsEs(i, j)+wpEp(i, j)+wrEr(i, j),

(6)
where D is the vector of depth values. Eg is the shading gradient
constraint, Es is the smoothness constraint, Ep is the depth con-
straint, and Er is a temporal smoothness prior. This is broken down
into the following four terms:

Shading Gradient Constraint Our data term penalizes differ-
ences between rendered shading gradients and intensity image gra-
dients:

Eg(i, j) = [B(i, j)−B(i+ 1, j)− (I(i, j)− I(i+ 1, j))]2

+[B(i, j)−B(i, j + 1)− (I(i, j)− I(i, j + 1))]2,
(7)

This gradient-based metric is more robust against inaccuracies of our
approximate shading model which does not account for all lighting
effects in a real scene. In order to evaluate the shading constraint
w.r.t. D(i, j), we first establish the link betweenD(i, j) and n(i, j).
The 3D position p(i, j) (in camera coordinates) of a depth point at
distance D(i, j) from the camera is:

p(i, j) =

(i− ux)/fx
(j − uy)/fy

1

D(i, j), (8)

where (ux, uy) is the camera’s principal point, and fx and fy are the
focal lengths in x and y direction. The unnormalized surface normal
at (i, j) can be computed from the 3D points of the neighboring
depth pixels (Fig. 3):

ñ(i, j) = (p(i, j − 1)− p(i, j))× (p(i− 1, j)− p(i, j)). (9)

After substituting Eq. (8), this evaluates to:

ñ(i, j) =


D(i,j−1)(D(i,j)−D(i−1,j))

fy
D(i−1,j)(D(i,j)−D(i,j−1))

fx
ñx(i,j)(ux−i)

fx
+

ñy(i,j)(uy−j)
fy

− D(i−1,j)D(i,j−1)
fxfy

 .

(10)

Smoothness Constraint As shading-based refinement from a
single image is ill-posed, we employ geometric regularization to
constrain the solution. We enforce a Laplacian smoothness constraint
for each pixel, which is computed as:

Es(i, j) = ‖p(i, j)− ws(p(i− 1, j) + p(i, j − 1)+

p(i+ 1, j) + p(i, j + 1))‖22,
(11)

where ws = 0.25 is the Graph Laplacian weight for the 1-ring
neighborhood on the regular image triangle grid (Fig. 3), and p(i, j)
is computed according to Eq. (8). Fig. 3 shows the neighborhood of
this geometric regularizer.

Depth Constraint We also define a depth constraint, which en-
forces that the refined depth stays close to the initial depth before
refinement Di:

Ep(i, j) = (D(i, j)−Di(i, j))2, (12)

Temporal Constraint To reduce temporal aliasing in our recon-
structions, for static scenes we employ a temporal constraint to
stabilize the refined depth. This uses the normals from the previous
frame to constrain the depth in the current frame, and is defined as:

Er(i, j) = (np(c(i, j)) · (p(i, j)− p(i− 1, j)))2

+ (np(c(i, j)) · (p(i, j)− p(i, j − 1)))2

+ (np(c(i, j)) · (p(i− 1, j)− p(i, j − 1)))2,

(13)

where np is the refined normal in the previous frame, and c(i, j)
is the pixel in the previous frame corresponding to pixel (i, j) in
the current frame. Unlike offline model-based reconstruction ap-
proaches, where pixel correspondences are implicitly given through
a tracked template [Wu et al. 2013], our correspondences c(i, j) are
computed using a GPU-based iterative closest point (ICP) [Besl and
McKay 1992] alignment between current and previous depth maps.



4.3 Adaptive Refinement

As our image formation model has not taken albedo variation into ac-
count, our method may interpret albedo changes as shading variation
and produce artificial details around albedo boundaries. In order to
reduce these texture-copy artifacts, we modified our shading energy
term in Eq. (7) to be weighted by a binary mask, which decides if
the corresponding image gradient comes from shading variation or
albedo change. So the modified shading energy is defined as:

Eg(i, j) = wr
ij [B(i, j)−B(i+ 1, j)− (I(i, j)− I(i+ 1, j))]2

+wc
ij [B(i, j)−B(i, j + 1)− (I(i, j)− I(i, j + 1))]2,

(14)

where wr
ij , w

c
ij ∈ {0, 1} are binary weights for each row and col-

umn, which are set to zero for albedo boundary edges. Albedo
changes usually result in large difference in RGB color space [Horn
1974]. Therefore, we detect these by applying a user-defined thresh-
old to an edge map computed on the albedo image Ia. Fig. 4 shows
an example of how this strategy can reduce the texture-copy artifacts
with varying thresholds. As the shading constraint is not reliable
along silhouettes, we also search for depth discontinuities and set
the corresponding weights to zero.

Solving the non-linear energy (Eq. 6) with its high number of un-
knowns in real-time is challenging. In the next section, we describe
how to solve this optimization using a novel GPU-based Gauss-
Newton solver that works on a patch subdivision in image space.

5 Parallel Energy Minimization

Our refinement energy E(d) : RN → R (Eq. 6) is non-linear given
the image formation model and its dependence on the orientation of
the surface normal. We use a row-major ordering of the pixels in
the depth image D at the target resolution to obtain the parameter
vector of the N unknown per-pixel depth values as follows:

d =
[
. . . , D(i, j), . . .

]T
. (15)

Even at moderate resolutions, the objective has a considerable
amount of parameters (i.e., ≈ 307k at a resolution of 640 × 480).
To optimize a non-linear objective with such a high number of
unknowns at real-time rates, we exploit the massively parallel archi-
tecture of modern GPUs. Minimizing E with respect to the unknown
parameters is a non-linear least squares problem that can be rewritten
as:

E(d) =
M∑
k=1

rk(d)
2. (16)

The total number (M = 9N ) of residual terms rk depends on the
shading gradient (2N terms), depth (N terms), temporal (3N terms)
and smoothness constraints (3N terms). The next sections describe
our efficient parallel patch-based Gauss-Newton solver, that allows
us to minimize this energy for more than 500,000 parameters at
real-time rates.

5.1 Parallel Gauss-Newton Solver

We reformulate our objective E in terms of its residual vector F :
RN → RM to obtain the classical Gauss-Newton form:

E(d) = ||F (d)||2, F (d) =
[
r1(d), . . . , rM (d)

]T
. (17)

Refined depth values d∗ are then computed by minimizing:

d∗ = argmin
d

||F (d)||2.

Figure 5: To solve our problem efficiently, we subdivide our domain
into patches (left). Each patch is optimized locally, which requires
a two-pixel wide boundary (center). We can further optimize this
procedure by only processing patches with foreground information
(right).

Figure 6: For each patch p, a thread block is started with as many
threads as the patch has pixels. First, all threads read patch data
including a two-pixel size boundary to shared memory. Then, we
perform multiple PCG steps within shared memory, and write the
result back to global memory.

Explicit linearization of the vector field F (d) using Taylor expan-
sion yields:

F (dk+1) ≈ F (dk) + J(dk)δ, δ = dk+1 − dk. (18)

J(dk) is the Jacobian of F evaluated at the solution after k iterations.
The resulting optimization problem is a linear least squares problem

δ∗ = argmin
δ

||F (dk) + J(dk)δ||2,

in the unknown optimal updates δ∗. We compute the δ∗ as the
solution of the corresponding normal equations:

J(dk)
TJ(dk)δ = −J(dk)

TF (dk).

These can be solved jointly on the complete domain using iter-
ative solution techniques like preconditioned conjugate gradient
(PCG). Previous work [Weber et al. 2013; Zollhöfer et al. 2014a]
demonstrated the feasibility of this strategy in a GPU optimization
framework for dynamics simulation and non-rigid registration, re-
spectively. One important observation is that switching kernels has a
significant impact on performance. The aforementioned methods are
optimized such that they require 2 kernel calls for initialization and
3-4 kernel calls in the inner PCG loop, depending on whether the
system matrix JTJ is explicitly evaluated or by sequentially apply-
ing JT and J . As a result, even for several thousands of variables,
the optimization problem can be solved at interactive rates.

However, for our problem we should be able to optimize more
than half a million values in real time, which is not possible with
these approaches. To solve this, we develop an approach that can
cope with the larger number of variables by exploiting the implicit
topology of the depth mesh.

5.2 Patch-wise Optimization

With our error term, the computation for a single pixel only depends
on a 5× 5 image neighborhood. Thus, we can subdivide the domain



into square patches (cp. Fig. 5), and perform the optimization patch-
wise using a variant of the Schwarz Alternating Procedure. The
optimization of a single patch happens per thread block, where all
data can be kept in shared GPU memory. This procedure exploits the
locality of the optimization constraints and the uniform tessellation
of the optimization domain. It scales well to a higher number of
unknowns and reduces kernel call overhead and global memory
accesses by exploiting fast shared memory.

The optimization domain Ω (see Fig. 5) is partitioned into small
rectangular sub-regions (patches)

Ω =
⋃
i

Ωi, Ωi ∩ Ωj �= ∅.

The linear systems corresponding to the sub-regions (without bound-
ary) are solved independently by imposing Neumann constraints on
the boundaries δΩi. To be able to perform all computations in shared
memory, including the shading gradient energy and the smoothness
energy, we additionally have to read a two-pixel wide depth data
for each patch boundary, so that the computation can be efficiently
performed from local data. Optimization only happens on the inner
variables; boundary values remain unchanged.

In each Schwarz iteration, inner, and boundary variables of a patch
are first read and stored to shared memory. Then the inner variables
are optimized, keeping the boundary values fixed. Finally, the inner
variables are written back to global memory.

This decouples the patches and splits the set of parameters into
unconstrained inner (di) and constrained boundary (db) variables:

[
Ai,i Ai,b

Ab,i Ab,b

] [
di
db

]
=

[
bi
bb

]
.

Since the boundary variables are considered to be fixed, the corre-
sponding block entries can be moved to the right-hand side:

Ai,idi = bi −Ai,bdb.

Each local sub-problem on a sub-region (or patch) Ωi is assigned
to one thread block and solved in parallel using one thread per
variable. The patch size is set based on the GPU L-1 cache; thus
for our hardware setup, we use 16 × 16 patches. Including the
boundary values, this results in a 20× 20 grid that has to be kept in
shared memory. The per-patch problem is solved using an iterative
PCG solver, which is explained in the next section. The process is
repeated Ne times or until convergence.

The entire algorithm is shown as pseudocode in Algorithm 1 and
illustrated in Fig. 6. Note that Gauss-Newton and Schwarz iterations
happen concurrently. After each Schwarz iteration, we also apply the
delta updates, so each Schwarz iteration step implicitly performs a
Gauss-Newton step. This does not incur any additional computation,
because the PCG solver has to re-evaluate the Jacobian and the
residuals anyway, but results in faster convergence.

Fig. 7 shows the convergence behavior depending on the number
K of PCG steps. For the figure, we used Ne = 20 outer Gauss-
Newton/Schwarz iterations, and K = 1, 3, 5, 10 inner PCG itera-
tions. For K > 10 we observed no further improvement.

Note that we use no synchronization when writing depth values.
As a result, some patches might already read updated boundary
values, which leads to a mixture of Multiplicative and Additive
Schwarz. In terms of convergence, this is not a problem; however, the
approach becomes non-deterministic. On the other hand, avoiding
synchronization improves performance. We shift the initial patch
grid in each iteration by sub-patch steps based on a Halton sequence
to improve convergence and to avoid patch structures from becoming
visible in the solution.

Algorithm 1 Shared Memory PCG Kernel

for i = 1 . . . Ne do
for all patches p in parallel do

Fetch Data To Shared Memory(p);
Compute RHS And Preconditioner(p);
for k = 1 . . .K do

PCG Step(p);
end for
Write Result To Global Memory(p);

end for
end for

Figure 7: Convergence of our optimization procedure for Ne = 20
and K = 1, 3, 5, 10 for four successive RGB-D images at 640 by
480 pixels. The abscissa shows the outer iterations.

5.3 Patch-based Preconditioned Conjugate Gradient

Per patch, we solve the resulting linear optimization problem using a
fast shared memory PCG solver. All per-patch PCGs corresponding
to one Schwarz iteration are launched with a single kernel call. As
can be seen in Algorithm 1, this includes shared memory initializa-
tion as well as running K PCG iterations and writing back the local
patch results to global memory. In the PCG solver, we use a simple
Jacobi preconditioner that can be readily parallelized. We exploit
the memory hierarchy by caching all per-pixel data to registers and
loading all data that has to be accessed by neighboring threads to
shared memory. In each PCG iteration, a per-patch scalar product is
required, for which we use a fast block reduction in shared memory.
Excluding the block reductions, the inner PCG loop requires 6 syn-
chronization points. The system matrix JTJ is applied efficiently
on-the-fly in each PCG step in an optimized kernel exploiting the
sparsity of J .

5.4 Hierarchical Optimization Strategy

We run the proposed RGB-D shading-based refinement strategy in a
hierarchical coarse-to-fine manner to allow for a faster convergence
of our method. To this end, we build an image pyramid by succes-
sively restricting the input RGB-D data to the coarser levels. After,
we sweep from coarse-to-fine (nested iteration) through the hierar-
chy and alternate between our patch-based Gauss-Newton solver and
applying the prolongation operator. For prolongation and restriction,
we use a bi-linear interpolation of the samples. Currently, we use a
hierarchy with three levels.

5.5 Foreground Segmentation

Aside from the refinement of complete depth maps, we perform our
optimization only on blocks containing foreground pixels (cp. Fig. 5).
Based on the input depth, we mark all patches containing foreground
pixels, compute a linear ordering of these using a fast prefix sum,
and execute the refinement only on these foreground blocks.



Sequence Camera Resolution Foreground #Variables Preprocess Light Est. Refinement Σ

Augustus PrimeSense 1280× 1024 Yes 525k 7.0ms 2.5ms 26.4ms 35.9ms
Face PrimeSense 1280× 1024 Yes 245k 7.1ms 2.3ms 13.7ms 23.1ms
Body PrimeSense 1280× 1024 Yes 500k 6.9ms 2.4ms 25.6ms 34.9ms

Talking Asus 640× 480 No 307k 2.4ms 1.1ms 14.4ms 17.9ms
Vase Asus 640× 480 Yes 140k 2.6ms 1.0ms 7.2ms 10.8ms
Lucy PrimeSense 640× 480 No 307k 2.3ms 1.2ms 14.5ms 18.0ms

Flower KinectOne 1920× 1080 Yes 880k 19.5ms 3.7ms 43.2ms 66.4ms
Socrates Asus 640× 480 Yes 107k 2.5ms 0.9ms 6.2ms 9.6ms

Upper Body PrimeSense 1280× 1024 Yes 510k 6.8ms 2.5ms 25.8ms 35.0ms

Table 1: Overview of test sequences, parameters and achieved performance - see Sec. 6 for details. Effective frame rates of our algorithm thus
range from 15 fps at full HD to 93 fps at SVGA.

6 Results

We tested our real-time enhancement software on data from a Prime-
Sense Carmine 1.09 Short Range (RGB res. 1280× 1024, depth res
640× 480, framerate 12 fps), a Kinect One (RGB res 1920× 1080,
depth res. 512× 424, frame rate 30 fps), as well as an Asus Xtion
Pro (RGB res. 640× 480, depth res 640× 480, framerate 30 fps)
camera. Since video and RGB data are not frame synchronized in
the Kinect One, the camera needs to be moved slowly in order to
prevent artifacts. Our approach runs at real-time rates in excess
of 30 fps. On both static and dynamic scenes and for all RGB-D
sensors, a significant enhancement of detail compared to the raw
depth data was achieved, see Fig. 12, Fig. 1, and the supplemental
video and document, which show screen captured visualizations of
the reconstructions before and after refinement.

In total, qualitative tests were done on 9 scenes, see Tab. 1. We
always enable the prior term in lighting estimation by setting λl =
10. We set the empirically found weights for depth refinement as
follows: wg = 1, ws = 400, wp = 10, wr = 100 for all static
scenes; wg = 1, ws = 100, wp = 10, wr = 0 for all dynamic
scenes. Please refer to Tab. 1 for details of the sequences and timings
of the individual steps measured on an Intel Core i7-3770 CPU with
3.4GHz (16GB Ram) and an Nvidia Geforce GTX 780. The listed
preprocessing steps include: depth-to-color alignment, filtering of
depth and color, resampling of images, and foreground segmentation.
For those results, the Gauss-Newton optimizer ran with the following
parameters: 3 hierarchy levels, Ne = 10, 8, 6 outer iterations, and
K = 5, 5, 5 PCG iterations (coarse-to-fine). We enable the temporal
smoothness prior term for capturing static scenes, i.e., the Vase
sequence, Lucy sequence and Socrates sequence. The required
ICP alignment adds 3.5 ms for these three sequences to the total
computation time. This yields effective frame rates between 15 fps
at full HD and 93 fps at SVGA.

6.1 Evaluation

Quantitative Evaluation We quantitatively evaluate the accuracy
of our method on two synthetic sequences that are 400 frames long.
We use ground truth, detailed performance-captured face geome-
try [Valgaerts et al. 2012], and the ground truth lighting from St.
Peter’s Basilica [Debevec 1998] and render two RGB-D sequences.
In the first one (CoA) the albedo is uniform, and in the second one
(DA) we use a dense albedo map obtained from one of the captured
face images. To synthesize the depth map sequences, we first obtain
a quantized depth map from the stereo results of [Valgaerts et al.
2012], and then add Gaussian noise to mimic the noise from a depth
sensor.

We compare our method with the space-time multi-lateral RGB-
D filtering method of [Richardt et al. 2012] (STFilt), and with
reconstructions of CoA and DA using the single-frame shading-

Figure 8: Evaluation on one frame of synthetic CoA sequence : (a)
our result, (b) results with STFilt [Richardt et al. 2012], (c) result
with SBRol [Valgaerts et al. 2012]; (d) distance error heat map of
our result (red=high), (e) of the much higher error of STFilt, and (f)
the offline SBRol method with similar error to ours.

based refinement algorithm in the offline method of [Valgaerts et al.
2012](SBRol). As an error metric, we employ the average pixel-wise
Euclidean distance in mm per frame (de), as well as the average an-
gular difference of normals in degrees (dn). The distance and normal
errors averaged over all frames are summarized in Tab. 2. Compared
to STFilt, our method produces results with much lower distance
and normal errors, as it obtains metrically faithful reconstructions as
opposed to only plausible results (see Fig. 8). In comparison to the
more involved offline method by [Valgaerts et al. 2012], our results
exhibit comparable distance error, but our real-time capability comes
at the price of a slightly higher error in reconstructed normal orienta-
tion. The respective error curves over time on both DA (Fig. 9) and
CoA (additional material) further confirm the above conclusions.

Qualitative Comparison We also compared our method with
STFilt on real-world data (talking sequence, see Tab. 1). Using
the same hardware as previously described, our approach not only
has a runtime advantage (55.8 fps against 8.5 fps), but also produces
much more detailed results (see Fig. 10 and video).



Seq. CoA DA
de (σ) dn (σ) de (σ) dn (σ)

Ours 0.43(0.24) 5.75(5.31) 0.43(0.23) 7.08(6.31)
STFilt 1.41(1.02) 10.32(11.22) 1.36(0.99) 10.28(10.65)
SBRol 0.43(0.27) 5.26(4.85) 0.42(0.22) 6.94(5.76)

Table 2: Quantitative comparison against related methods. Our
online approach performs significantly better in terms of distance
de and normal error dn (stddv. σ in brackets) than a competing
state-of-the-art online method (STFilt [Richardt et al. 2012]), and
even comes close to an offline shading-based refinement method
(SBRol [Valgaerts et al. 2012]).

Figure 9: Distance and normal error on synthetic sequence DA
over all frames for our method, the RGB-D upsampling method
STFilt [Richardt et al. 2012], and the offline approach SBRol [Val-
gaerts et al. 2012].

6.2 Applications

Real-time 3D reconstruction We used our algorithm together
with the real-time voxel-hashing-based hand-held scanning approach
for depth cameras proposed by [Nießner et al. 2013]. With our
drastically enhanced depth map quality, full 3D models with more
detail can be reconstructed (voxel size of 0.5mm); see Fig. 1 and
Fig. 11.

Deformable 3D reconstruction We also integrated our algorithm
into the real-time deformable tracking approach by [Zollhöfer et al.
2014a], which leads to improved space-time coherent reconstruc-
tions of a non-rigidly deforming template, see Fig. 13.

6.3 Limitations

Our approach enables a leap forward in real-time scene reconstruc-
tion with depth cameras, but is still subject to several well-known
shape from shading limitations. For instance, texture-copy artifacts
are introduced by high-frequency albedo changes, causing problems
for both online and offline methods [Richardt et al. 2012; Han et al.
2013; Yu et al. 2013]. Our adaptive refinement (Sect. 4.2) is efficient
to mitigate the visual presence of these artifacts. However, we still
cannot completely prevent them; for instance see Fig. 4 and Fig. 12
(top left). Generally, we believe that the underconstrained nature of

Figure 10: On real-data, our approach (right) generates more
detailed results at higher frame rates than STFilt [Richardt et al.
2012] (middle).

Figure 11: Our enhanced depth maps used in the voxel-hashing-
based framework of [Nießner et al. 2013]. Reconstruction with
(white) and without (blue) refinement.

this problem will inspire future research directions.

In contrast to some offline methods, our real-time constraint allows
only for a simplified light transport model. That is, our initial
constant albedo assumption may exacerbate texture copying on
general scenes; however, our results show that in practice, very
faithful surface reconstructions with spatially-varying albedo are
feasible. Due to the second order spherical harmonics representation,
non-diffuse surfaces are still challenging for our method. In addition,
we are not able to improve depth maps around silhouettes since
the normal is undefined. We further assume a one-bounce local
illumination and ignore lighting visibility, which may lead to errors
in some cases. For example, hard shadows may result in artificial
detail around their boundaries. An interesting future direction would
be the incorporation of a screen-space ambient occlusion term to
account for local visibility.

7 Conclusion

We presented the first method for real-time shading-based refine-
ment of RGB-D data captured with commodity depth cameras in
general uncontrolled scenes. This is enabled by a new real-time in-
verse rendering framework that approximates time-varying incident
lighting as well as albedo in the scene. The algorithm then refines
the raw depth of the camera by optimizing a complex non-linear
energy using a new highly parallel Gauss-Newton solver on the GPU.
The results are superior to previous online depth map enhancement
algorithms, and on par with offline shape-from-shading approaches.
Our experiments further show that the approach enables a new level
of accuracy in handheld 3D scanning as well as deformable surface
tracking.
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Figure 12: From a raw depth map and an aligned RGB image, our approach generates rich details on real-world data. Our method captures
far more details than the raw depth map on static scenes, i.e., Socrates sequence, Lucy sequence and Flower sequence. Besides, our per-frame
refinement method can be readily applied to dynamic scenes, e.g. human performances, as shown on Body sequence and Upper Body sequence.
The closeup of the scarf region demonstrates the amount of small-scale detail captured by our method.

Figure 13: Our enhanced depth maps (middle, gray) used in the
non-rigid tracking framework of [Zollhöfer et al. 2014a]. Note the
increased amount of small-scale detail in the reconstruction (middle,
blue).
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BÖHME, M., HAKER, M., MARTINETZ, T., AND BARTH, E. 2008.
Shading constraint improves accuracy of time-of-flight measure-
ments. In Proc. CVPR Workshop.

CHAN, D., BUISMAN, H., THEOBALT, C., AND THRUN, S. 2008.
A noise-aware filter for real-time depth upsampling. In ECCV
Workshop on multi-camera & multi-modal sensor fusion.

CUI, Y., SCHUON, S., THRUN, S., STRICKER, D., AND
THEOBALT, C. 2013. Algorithms for 3d shape scanning with a
depth camera. IEEE Trans. PAMI 35, 5, 1039–1050.

DEBEVEC, P. 1998. Rendering synthetic objects into real scenes:
Bridging traditional and image-based graphics with global illumi-
nation and high dynamic range photography. In Proc. SIGGRAPH,
189–198.

DEBEVEC, P. 2012. The light stages and their applications to
photoreal digital actors. In SIGGRAPH Asia Technical Briefs.

DIEBEL, J., AND THRUN, S. 2006. An application of Markov
Random Fields to range sensing. In Proc. NIPS, 291–298.



DOLSON, J., BAEK, J., PLAGEMANN, C., AND THRUN, S. 2010.
Upsampling range data in dynamic environments. In Proc. CVPR.

FANELLO, S., KESKIN, C., IZADI, S., KOHLI, P., ET AL. 2014.
Learning to be a depth camera for close-range human capture and
interaction. ACM Trans. Graph. 33, 4.

GHOSH, A., FYFFE, G., TUNWATTANAPONG, B., BUSCH, J., YU,
X., AND DEBEVEC, P. 2011. Multiview face capture using
polarized spherical gradient illumination. ACM Trans. Graph. 30.

GUDMUNDSSON, S. A., AANAES, H., AND LARSEN, R. 2008.
Fusion of stereo vision and time-of-flight imaging for improved
3d estimation. Int. J. Intell. Syst. Technol. Appl. 5, 425–433.

HAN, Y., LEE, J.-Y., AND KWEON, I. S. 2013. High quality shape
from a single rgb-d image under uncalibrated natural illumination.
In Proc. ICCV.
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