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Figure 1: Interactive authoring using our dynamic GPU memory management approach. Left and right: simultaneous sculpting
and painting on top of Catmull-Clark subdivision surfaces. Center: local surface deformations in a larger 3D scene environ-
ment. The total time to apply surface edits is well below a millisecond in all test examples.

Abstract
We present a novel method to adaptively apply modifications to scene data stored in GPU memory. Such modifi-
cations may include interactive painting and sculpting operations in an authoring tool, or deformations resulting
from collisions between scene objects detected by a physics engine. We only allocate GPU memory for the faces af-
fected by these modifications to store fine-scale color or displacement values. This requires dynamic GPU memory
management in order to assign and adaptively apply edits to individual faces at runtime. We present such a mem-
ory management technique based on a scan-operation that is efficiently parallelizable. Since our approach runs
entirely on the GPU, we avoid costly CPU-GPU memory transfer and eliminate typical bandwidth limitations.
This minimizes runtime overhead to under a millisecond and makes our method ideally suited to many real-time
applications such as video games and interactive authoring tools. In addition, our algorithm significantly reduces
storage requirements and allows for much higher-resolution content compared to traditional global texturing ap-
proaches. Our technique can be applied to various mesh representations, including Catmull-Clark subdivision
surfaces, as well as standard triangle and quad meshes. In this paper, we demonstrate several scenarios for these
mesh types where our algorithm enables adaptive mesh refinement, local surface deformations, and interactive
on-mesh painting and sculpting.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Curve, surface, solid, and object representations I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing and texture

Keywords: real-time rendering, object modeling, GPU memory management, hardware tessellation

1. Introduction

Real-time rendering applications require storing scene data,
such as geometry and material information, on the GPU. Due

† henry.schaefer@cs.fau.de

to bandwidth limitations and latency it is infeasible to mod-
ify complex objects on the CPU and transfer these to the
GPU every frame. Instead, scene objects are typically ani-
mated by updating a few matrices that are then applied at
render time by the GPU. However, it should also be pos-
sible to apply fine-scale editing operations to a scene, e.g.,
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when a user paints or sculpts objects, or through interac-
tions between scene objects such as scratches, traces, or im-
pacts. Performing such local changes on scene objects can
be achieved by changing and updating color or displace-
ment textures. Unfortunately, these texture updates are ei-
ther global per object or restricted to a very limited number
of decal textures that may be applied locally.

In this paper, we propose an alternative approach that al-
lows performing fine-scale local changes on the appearance
or geometry of virtual 3D environments. In contrast to previ-
ous approaches, we have no limitation as to where and when
the modifications occur, nor as to how many modifications
are applied, so long as they fit into the available GPU mem-
ory.

We consider color and surface displacements to be surface
detail, which is obtained by the interactions between or with
3D objects. For instance, in authoring tools artists paint and
sculpt surfaces locally by applying different brushes. An-
other example is video games, where mesh surfaces are mod-
ified by collisions or other interactions (e.g., bullets, foot-
prints, scratches, etc.). The key contribution of our approach
is to apply these changes locally and allocate storage only
where needed. This reduces overall memory consumption,
allows for higher-resolution content, and increases perfor-
mance due to reduced memory I/O. In order to minimize run-
time overhead, we specifically designed our approach to run
entirely on the GPU, thus avoiding costly CPU-GPU mem-
ory transfer.

For efficient surface data storage, we employ the tile-
based GPU texturing formats of Burley et al. [BL08] and
Schäfer et al. [SPM∗12], where each tile corresponds to a
particular quad or triangle mesh face. As a mesh surface is
modified, we allocate texture tiles in a GPU memory heap,
similar to decals but within the same memory buffer. While
representing and storing color data is straightforward, we use
displacement offsets for local surface deformations. More
specifically, we apply analytic displacements [NL13] that
are rendered on top of Catmull-Clark subdivision surfaces
using the GPU hardware tessellator. Furthermore, we han-
dle triangular meshes by storing data as attributes of vertices
generated by GPU tessellation patterns [SPM∗12]. Note that
both storage schemes support direct evaluation in a pixel
shader and thus are applicable without hardware tessellation.

As use cases for our dynamically-managed GPU data
structures, we implemented direct on-mesh painting and
sculpting for vector- and scalar-valued surface displace-
ments. The adaptive nature of our approach enables the local
application of these modifications in large virtual environ-
ments without affecting authoring or render performance. In
addition, we demonstrate an efficient employment of decals,
where surfaces are modified based on object-object interac-
tion in game-like scenarios.

2. Related Work

2.1. Mesh Data and Texturing Formats

Mesh data such as color and displacement offsets are typ-
ically stored in uv-atlas textures. Parameterizing meshes
and providing consistent transitions at seams along uv-chart
boundaries is a well-known issue in computer graphics.
[SWG∗03, GP09, SNK∗14]. Hanrahan and Haberli [HH90]
avoid these parameterization problems by employing vertex
coloring, which restricts the amount of detail to the vertex
density. Others employ spatial data structures, e.g., octree
textures for storing and applying colors at the expense of ad-
ditional run-time overhead introduced by traversing the tree
data structure [LHN05].

Purnomo et al. [PCK04] avoid parameterization and seam
problems by introducing per-face texturing based on an im-
plicit surface-to-texture mapping. This allows them to find
quadrilateral regions and align them with the 2D texture grid,
thus avoiding inconsistent data access.

A conceptually more simple approach is PTex [BL08],
where each face is mapped onto a single texture tile and ad-
jacency pointers are used to perform data access along tile
boundaries. PTex is particularly useful in the context of in-
teractive authoring where data is dynamically generated on
the CPU. Further development led to the adoption of tile-
based texture formats for GPU applications, for instance
in the context of displacement mapping [NL13, NSSL13]
where texture seams result in intolerable surface cracks.
Another way to avoid seam artifacts is the enforcement of
boundary constraints [RNLL11] that need to be applied af-
ter each texture update.

Seamless texturing of triangular meshes is not supported
by the previously mentioned tile-based texturing formats.
Therefore, Yuksel et al. [YKH10] introduce Mesh Colors,
where data is stored according to subdivision patterns for
faces and edges through indirect memory access. Schäfer
et al. [SPM∗12] extend this idea for high-frequency sur-
face detail and specifically target the GPU hardware tessel-
lation unit. This approach involves assigning attribute data
to vertices generated by the tessellator and supports multi-
resolution content storage. We adopt this data structure for
triangular meshes since it implicitly handles boundary over-
lap. In contrast to the original approach, we now dynami-
cally manage vertex attribute data based on local deforma-
tion events [SKS13]. Thus, we are able to significantly re-
duce memory consumption by applying surface edits locally.

2.2. Local Surface Edits

When painting surfaces, direct feedback is crucial in or-
der to guide artists during the interactive content creation
process [HH90]. Recent research focuses on directly apply-
ing edits on the GPU [BKW10, LHN05] with an emphasis
on multi-resolution editing [RBM06]. Multi-resolution ap-
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proaches are also established in the context of surface mod-
eling, and mostly based on subdivision surfaces [ZSS97],
[KCVS98]. However, these approaches cannot handle fine-
scale surface deformations since mesh levels are too coarse.
Instead, triangles need to be added manually as presented
by Paquette et al. [PPD01], where local subdivision is per-
formed to account for small deformations. Since they only
require inserting a few triangles per frame, their method runs
at interactive rates on the CPU; however, it is not designed
for parallel processing on the GPU.

2.3. Displacement Mapping and Hardware Tessellation

Displacement maps describe high-frequency surface defor-
mations by storing either vector- or scalar-valued surface
offsets in textures [Bli78, Coo84]. Displacements have been
heavily used in the context of multi-resolution modeling
(e.g., Guskov et al. [GVSS00] and Lee et al. [LMH00]).
An overview of classical displacement mapping is pro-
vided by Szirmay-Kalos et al. [SKU08]. With the intro-
duction of GPU hardware tessellation, displacement map-
ping has gained new momentum, providing dynamic tessel-
lation of patch primitives and overcoming previous limita-
tions to multi-resolution editing [TBB10,NCnP∗09]. There-
fore, smooth parametric surfaces (e.g., subdivision surfaces)
are used as an underlying surface representation [LSNCn09,
NLMD12, MNP08, VPBM01, BA08, SNK∗14].

As previously mentioned, the challenge is to store as-
sociated displacement data efficiently and to avoid texture
seam artifacts (cf. Section 2.1). While previous displace-
ment storage approaches (e.g., Schäfer et al. [SPM∗12],
Nießner, Loop [NL13], Schäfer et al. [SKN∗14]) allow for
data consistency across boundaries, they suffer from their
static memory layout. Thus, unnecessarily large textures are
required in order to account for all potential surface defor-
mations. We eliminate this limitation by dynamically al-
locating GPU memory only in regions when and where
needed.

2.4. GPU Memory Management

Dynamic memory management is a well-researched topic
in operating system engineering [JL96]. Steinberg et al.
[SKKS12] introduce scattered parallel memory allocation
for dynamic data. The key idea is to allocate a fixed amount
of memory blocks and keep track of each block’s fill rate.
While this can be implemented on the GPU, it leads to in-
ternal fragmentation since data is scattered across multiple
memory blocks. Instead, we avoid internal fragmentation by
storing data to fit block sizes. This enables parallel alloca-
tion and deallocation, and thus greatly improves manage-
ment and lookup performance.

3. Algorithm Overview

The input for our algorithm is a scene consisting of triangle
or quad meshes, which we call base meshes. We apply paint-
ing and sculpting operations progressively to base meshes
using our algorithm, as outlined in Figure 2. Note that the
entire pipeline is executed on the GPU without costly scene
data transfer between the CPU and GPU.

user 

input

intersectbrush

physics

allocate

deallocate
modify render

scene in GPU memory

Figure 2: Algorithm overview.

Modifications are described using brush objects. The no-
tion of a brush is inspired by authoring tools where user-
controlled brushes are used to paint and deform scene ob-
jects. We define a brush as an oriented bounding box (OBB),
bounding the region of influence, and a brush function de-
scribing the edits to be applied in the brush’s space. The
brush function can be defined as an analytic function, a
texture defining colors for painting brushes, or a displace-
ment map for sculpting brushes. We position user-controlled
brushes on the surfaces of objects at the mouse cursor
with the brush orientation defined by the underlying tangent
frame. In order to compute the attribute values for modified
base faces, we determine the affected data positions on face
tiles, map these to brush space, and evaluate the brush func-
tion.

We also use brushes to deform objects at collisions, which
are detected by a physics simulation. Therefore, we sim-
ply attach brushes to object parts such as the feet of ani-
mated characters. If the physics simulation detects a colli-
sion between a brush and another object, we apply deforma-
tions according to the brush function. For instance, if a foot
touches soft ground, the underlying surface is automatically
deformed to mimic the geometric shape of the footprint.

Once a brush has been defined, we determine all base
mesh faces that are affected by the current brush in the in-
tersect stage. To this end, we intersect all base faces with
the OBB of the brush. Note that intersections must be com-
puted with the displaced surface geometry, rather than the
base mesh. To avoid costly intersection tests with the fully
tessellated geometry, we determine a conservative bound of
the base mesh’s OBB considering the maximum displace-
ment extent. We use the brush OBB and the extended base
face OBB as a trivial rejection test; if there is no overlap,
then all sub-faces do not intersect. Otherwise, all tessellated
sub-faces need to be considered.
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For all (newly) affected base mesh faces, memory is allo-
cated to store new color or deformation information. Mem-
ory may also be deallocated in case modifications are re-
moved or the available memory is exhausted. The alloca-
tion and deallocation step requires global memory handling,
which we will detail in Section 4. In particular, this step
heavily depends on the underlying mesh data structure. In
this paper, we explain and present results for two different
mesh data structures. First, we look at quad meshes, subdi-
vided using Catmull-Clark subdivision and a tile-based tex-
ture format similar to PTex [BL08]. Second, we consider tri-
angle meshes using the multi-resolution mesh attributes ap-
proach by Schäfer et al. [SPM∗12].

Once the memory has been assigned, we evaluate the
brush and modify all affected faces (i.e., both newly and
previously allocated faces). Finally, the scene is rendered.
Therefore, sculpted displacements and painted colors are di-
rectly evaluated in corresponding domain and pixel shaders
[SPM∗12, NL13] using our dynamic data structures. Sur-
face deformations are applied using GPU hardware tessella-
tion, enabling adaptive level-of-detail rendering. Addition-
ally, we perform feature-adaptive Catmull-Clark subdivi-
sion [NLMD12, Nie13] on the quad meshes.

4. Dynamic GPU Memory Management

Dynamically adding and removing attributes requires man-
aging memory chunks which store attribute data. In this sec-
tion, we describe the general concept of our memory man-
agement method, which will be refined in the following sec-
tions for varying applications and data structures.

We assume scene environments consisting of meshes with
triangle and quad faces. For some of these faces, we want
to assign memory, possibly at a high resolution, in order to
store additional attribute values for face modifications. In our
examples, these attributes are displacement values or colors,
generated by user input or by a physical simulation. For ren-
dering Catmull-Clark subdivision surfaces and displacement
mapping, faces are subdivided at render time using hardware
tessellation, and the attributes of the modified faces are ap-
plied in the tessellation shaders.

While the application is running, the set of modified faces
and attribute values changes dynamically. Some faces ob-
tain new attributes (e.g., when a brush is applied for the
first time), some faces have attributes modified (e.g., when a
brush is applied to a previously edited face), and some faces
have attributes removed (e.g., if an eraser brush is applied).

Since we consider scenes with large face counts and high
attribute block resolutions, we typically cannot pre-allocate
an attribute block for all faces in a scene. Instead, we pre-
allocate a fixed amount of attribute blocks, the attribute
heap, which we use to dynamically assign blocks to faces.
Each face stores a pointer, which references a heap block if
it has assigned attributes.

Next, we introduce a parallel GPU memory management
mechanism in order to allocate new attribute blocks and to
deallocate blocks if they are no longer used. To keep track
of unused blocks in the attribute buffer, we maintain a list of
free blocks, where n f ree is the number of available elements
(see Fig. 3). For efficient allocation, deallocation, and mod-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

face memory

face ID

attribute 
heap

not allocated

allocated

free block
table

n
free

Figure 3: Memory management: the attribute heap contains
memory blocks of equal size that maintain high-resolution
face attributes. Modified faces (dark blue) possess a pointer
to one of these blocks. References to free blocks are stored in
the free block table.

ification, we apply the operations depicted in Fig. 4. First,
a simple classification kernel, running on all faces, deter-
mines whether an attribute block should be allocated for a
face, whether the attributes should be modified, or whether
the attribute block for the face can be deallocated.

Second, a multi-compaction operation is applied, which
outputs three lists: faces that require allocation, faces that
require modification, and faces that can be deallocated. Such
a multi-compaction can be performed very efficiently using
a parallel scan operator [Ble90, SHGO11, HSO07].

Once these lists are generated, we efficiently process
the allocations, modifications, and deallocations using three
GPU kernels, one for each list:

• For the allocation, each thread i simply assigns the at-
tribute block at position n f ree− i from the free block table
to face allocateSet[i]. After this, n f ree is globally
decreased by the number of allocations.

• The modification kernel applies brush edits to the at-
tributes of face modifySet[i].

• The deallocation kernel writes the attribute block pointer
of face deallocateSet[i] back to the free block ta-
ble at position n f ree + i+ 1, and sets the attribute block
pointer to null. Then, n f ree is globally increased by the
number of deallocations.

With this approach, all synchronization has been moved to
the compaction operation, which is insignificant with regard
to computation time. All steps are executed in parallel and
no further synchronization is required.
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Figure 4: Memory management: first, for each face, we com-
pute whether attributes need to be allocated, modified, or
deallocated (classification kernel). Second, resulting deci-
sion arrays are transformed into index-arrays containing all
affected faces (multi-compaction). Finally, for each of these
arrays, kernels are executed that perform allocation, modifi-
cation, and deallocation without requiring further synchro-
nization.

In order to handle specific data structures, we need to fur-
ther extend our scan-based memory management scheme.
For example, to store tessellation attributes, we want to dis-
tinguish between attributes per vertex, per edge, and per
face, and we typically want to store attribute blocks of dif-
ferent resolutions. We introduce these extensions in Section
5 and 6, along with painting and sculpting applications.

5. Dynamic Mesh Modifications on Quadrilateral Faces

In this section, we consider dynamic modifications of
meshes composed of quadrilateral faces. We dynamically
assign texture tiles to faces which store local detail. In our
case, this is color and/or displacement data. Each face stores
a memory pointer which indicates the allocation of texture
tiles. The strength of our method is the incremental tile allo-
cation through surface painting and deformation at runtime.

Each allocated tile corresponds to one specific face, sim-
ilar to the PTex format [BL08]. We manage tiles for color,

scalar, and vector displacement data independently. Our de-
fault for surface offsets is the analytic displacement for-
mat [NL13], since it implicitly conveys surface normal infor-
mation. We also support traditional displacements; however,
normal re-computation after surface edits causes additional
computational overhead.

In contrast to the original PTex format, we additionally
store a one-texel boundary overlap for each tile. While this
causes some memory overhead due to redundant data stor-
age, it is beneficial from a rendering standpoint since most
filter operations can be performed without adjacency access.
Further, storing a mip-map hierarchy per tile (see Figure 5)
allows for efficient tri-linear interpolation. More elaborate
data access such as anisotropic filtering is also feasible, but
requires reads from multiple tiles.

In order to obtain data from neighboring tiles, we store
the mesh connectivity in a static GPU buffer. Since each tile
knows its corresponding face index, mesh connectivity and
tile adjacency pointers are equivalent. While this involves
one level of indirection, it abstracts from dynamic tile allo-
cation.

Figure 5: Layout of a tile: each tile keeps the original square
attribute grid (left) and down-filtered versions (right). To
ease and accelerate rendering, each mip-map level addition-
ally stores a one-ring boundary overlap (red) which contains
copies of values of adjacent tiles.

5.1. Allocation and Deallocation

For allocating and deallocating per-face texture tiles, we em-
ploy the memory management described in Section 4. Since
color and displacements have different memory footprints
and resolutions, we use two different heaps with their own
free memory tables. Note that displacements are either vec-
tors or scalars depending on modeling flexibility and storage
constraints.

5.2. Painting and Deformation

Next, we process all faces that are flagged as modify based on
our brush input. Note that these include all faces designated
for allocation. Based on the brush type, we apply respec-
tive edits to the local tile. Since obtained face IDs map to
allocated tiles, we can directly write edits to GPU memory
without further synchronization. For paint brushes, we use
single color input with different falloff variations and tex-
tures (see Section 3). For each affected tile texel, we map
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its position to brush space and evaluate the brush function.
Sculpting is performed similarly, while taking advantage of
analytic displacements [NL13] which do not require surface
normal re-computation.

5.3. Overlap Update

After tile data has been written, we need to update the
boundary overlap of modified tiles. Therefore, we employ
the pre-computed mesh connectivity data for accessing ad-
jacency information. First, we run an edge kernel that copies
overlap along edges (we use one thread per texel). Next, we
compute consistent data for texels at extraordinary points;
i.e., we equalize corner texel values by averaging the corre-
sponding corner values. Finally, we update the corner over-
lap of all patches. Since we only update the overlap of tiles
flagged modify, runtime overhead is marginal.

5.4. Subdivision Surface Rendering

For visualization in our demos, we use the OpenSubdiv
framework, which incorporates subdivision surface render-
ing using GPU hardware tessellation [NLMD12] and sup-
ports PTex input data [BL08]. During rendering, tile data is
applied to faces with attached textures. For displacements,
surface offsets (either scalar- or vector-valued) are evalu-
ated as analytic displacements [NL13], avoiding the require-
ment for normal maps. Note that tiles are stored in texture
arrays and maintain a one-texel boundary overlap. This en-
ables hardware filtering for color data except for anisotropic
filtering where we manually access adjacent tiles.

6. Dynamic Modification of Triangle Meshes

In this section, we describe handling local modifications on
triangle meshes. We employ the data structure proposed by
Schäfer et al. [SPM∗12], which is based on an implicit pa-
rameterization for triangle meshes. Attributes are stored at
pre-defined domain locations corresponding to the tessella-
tion patterns of the hardware tessellator. Since data access is
indexed and shared along edges, data consistency is implic-
itly enforced.

Instead of a single tile per face as in the previous sec-
tion, we now require storage for base mesh vertices as well
as vertices on tessellated edges and faces. The correspond-
ing attribute heap and memory layout (see Figure 6) contain
distinct blocks for vertices, tessellated edges and interior ver-
tices of tessellated triangles. We dynamically manage data
only for edges and faces, but not for vertices of the base tri-
angle, since the storage requirement is not significant enough
to justify the computational overhead.

For now, we assume that if a triangle is subdivided, only
a single user-defined tessellation factor T , e.g., T = 16, is
used. The number of new vertices after tessellation is defined
by #Vedge = T −1 for edges and #V f ace = b 3T

2 ( T
2 −1)+1c

... ... ...

...
...

...

... ...

memory

vertex/edge/face
attribute heap

free block
table

n
free

vertices edges faces

edges n
free

faces

Figure 6: Data layout for dynamic memory management,
adapted for the storage of tessellation attributes. The at-
tribute heap contains memory blocks for vertices, edges, and
faces, all of different size. Attributes for vertices are stat-
ically assigned, whereas we dynamically allocate memory
for edges and faces. Two free memory tables keep track of
unused attribute blocks.

within a face, respectively. The attribute heap contains three
types of attribute blocks: first, one attribute for each base
mesh vertex, then a number of blocks of size Vedge for edges,
and lastly, a number of blocks of size V f ace for faces. Ex-
panding upon Euler’s formula for closed meshes, we allocate
twice as many edge blocks as face blocks. Figure 6 shows the
described memory layout.

6.1. Allocation and Deallocation

To handle allocation and deallocation, we apply our mem-
ory management scheme described in Section 4. However,
we now need to allocate and deallocate data for the affected
edges and faces. Thus, we perform the brush intersection
computation for all edges and faces, and have the multi-scan
output separate processing flag arrays (allocSet, modifySet,
and deallocSet) for both entities. We then allocate and deal-
locate memory blocks for edges and faces separately.

6.2. Modification

Next, we must set the attribute blocks of the edges and faces
from the modify list according to the current brush. We exe-
cute GPU kernels for all these edge and face vertices to com-
pute the new attribute values. In both kernel types, we iterate
over all vertices that result from tessellation, compute their
attribute value from the current brush, and store the value in
the attribute block. The iteration over all vertices along an
edge is simple. For vertices in the interior of a base face, we
have to invert the indexing scheme. That is, we reconstruct
the barycentric coordinate within the face of the base mesh
directly from the index. An efficient method for computing
this inversion can be found in [SPM∗12].
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6.3. Normal Computation

Shading displaced objects typically requires a normal map.
When sculpting a mesh, displacements are changed, and nor-
mals must be re-computed based on the new displacement
data. In the following, we show an efficient method to com-
pute displaced surface normals on-the-fly.

A smooth normal at a vertex is typically computed by
averaging the geometric normals of the neighboring faces
[Max99], which involves traversing the one-ring of a vertex.
There are eight different one-ring configurations for vertices
that are generated by hardware tessellation from triangular
base patches (see Fig. 7). In order to compute normals for
edges on base patch boundaries, we fetch displacement data
from both adjacent faces. On patch corner points that are af-
fected by deformations, adjacency information is stored to
perform the one-ring traversal. We compute area-weighted
normals by summing up unnormalized face normals. As we
only re-compute normals for modified faces, we store re-
sulting normals in a separate buffer whose elements corre-
spond to displacement values. Normal re-computation is im-
plemented in a compute shader and handles all affected ver-
tices. Note that computed normals converge to the geomet-
ric per-face normals of the base patch if displacement values
are zero. To prevent flat-shading artifacts, we interpolate be-
tween smooth base patch normals and newly computed nor-
mals based on the displacement length.

Figure 7: Tessellation pattern showing the eight topological
cases for a one-ring traversal on a tessellated triangle face.

6.4. Triangle Mesh Rendering

When rendering scenes, we process displacements using
hardware tessellation and access tile colors in a pixel shader.
In contrast to Section 5, the base mesh is not a subdivision
surface. Hence, the tessellator linearly interpolates triangu-
lar patches and applies assigned displacement attributes. In
the hull shader, we determine whether a patch has allocated
displacement data. If so, we specify tessellation factors for
edges and face interiors; otherwise, the base triangle is ren-
dered without further tessellation. We also obtain the start
index of the memory block of the current triangle in the hull

shader. Finally, the local memory index within a block is de-
termined in the domain shader based on the barycentric coor-
dinates (cf. [SPM∗12]). This allows us to access and process
vertex attribute data.

7. Extensions

7.1. Multi-Resolution Handling

When sculpting an object, typically a rough shape is sculpted
first, which is then progressively refined. For this purpose,
most sculpting applications support deformations at differ-
ent detail levels. We enable this kind of multi-resolution
editing by allowing for different memory block sizes. More
specifically, we support two additional tile resolutions, T/2
and T/4, where T is the resolution of the original face (quad
or triangle). We also store free memory tables to maintain
the additional memory blocks, which are shown in Fig. 8 for
triangular tiles.

When an editing operation is applied at a selected level,
three states are possible: 1) The element was not previously
edited. In this case, we allocate memory and edit the ele-
ment. 2) The object has been previously edited at the se-
lected level and memory has already been allocated. In this
case, we can directly apply edits. 3) The element has been
edited previously, but at a different level. In this case, we
first allocate memory at the specified level and then copy
attribute values to all other levels in order to enforce consis-
tency between levels.

7.2. Removal of Edits

Our memory management system also supports dynamic
deallocation of assigned data. For instance, an eraser brush
can remove previous edits. Modifications may also decay
over time. In these cases, we smoothly fade out modifica-
tions using linear blending, and deallocate memory blocks
at some point. To ensure temporal causality, we store time-
stamps of edit events at corresponding data locations (texel
or vertex attributes). If modifications are applied to faces that
already contain edits, the timestamps are updated accord-
ingly. Thus, only the most recent edit and timestamp needs
to be considered.

...

...

...

attribute heaps

edge blocks

edge table

free block
tables

 0 1resolution 2 n

face blocks

face table

vertices

Figure 8: Multi-resolution handling: for each resolution,
we allocate different edge and face blocks (attribute heap),
and maintain a separate free memory table.
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Figure 9: From left to right: mesh without fine detail (no memory allocated); mesh after surface painting with a textured brush;
visualization of memory allocation status (red = allocated tiles, green = free tiles).

8. Results

We implemented our algorithm using DirectX 11 running
under Windows 8. All our GPGPU kernels use Direct Com-
pute, and we employ the Direct3D 11 graphics API for ren-
dering. Accordingly, all our GPU code is written in HLSL
and runs on an NVIDIA GTX Titan. Times are provided in
milliseconds and account for all runtime overhead except
UI rendering. Our default render resolution is 1920x1080.
In the following, we provide results for tile-based editing
of quadrilateral meshes as well as triangle meshes which
use the tessellation pattern storage scheme. Additionally, we
show measurements for brush intersection and GPU memory
management.

8.1. Tile-based Editing

In our first example, we apply dynamic editing on the Frog
and Dragon subdivision surface models (both quads only)
with 1292 and 2782 base faces, respectively. We apply our
dynamic memory management scheme on top of these mod-
els rendered using feature adaptive Catmull-Clark subdivi-
sion and show corresponding results in Fig. 9. Green re-
gions account for faces without allocated color and dis-
placement data; red regions correspond to allocated tiles.
A dynamic memory management example for simultane-
ous painting and sculpting is shown in Fig. 1 left and right.
Render times are 1.07 ms for the Frog and 0.89 ms for the
Dragon model. Fig. 10 shows the results of an interactive
painting and sculpting session on triangular meshes. An ex-
ample of vector displacements is depicted in Fig. 11. In the
middle of Fig. 1, we show a large scene environment, on
which we locally apply displacements. The render time for
the larger Streets of Asia scene environment, which consists
of 800K triangles, is about 6 ms.

Note that our memory management scheme does not in-
volve any overhead to access tile data. Compared to uv-atlas
textures, which require loading uv coordinates for face ver-
tices (i.e., 24 byte for triangles, 32 byte for quads), our tile-
based data structures require fewer global reads to access tile

Figure 10: Example of dynamic memory allocation: scalar
displacement values are stored in regions affected by a brush
as shown in the wireframe overlay.

Figure 11: Vector displacement edits using our adaptive
GPU memory management. The image on the right illus-
trates displaced surface normals.

data (16 byte per triangle, 6 byte per quad patch). Texture
atlas formats are also unsuitable for dynamic memory man-
agement since dynamically bin-packing texture charts to a
texture atlas requires a costly global optimization step.

8.2. Intersection and GPU Memory Management

When an edit operation is applied to a mesh, we first in-
tersect the mesh with the brush OBB. Then, we compact
the result buffer in order to reduce work on subsequent al-
gorithm stages (cf. Section 4). Table 1 depicts the overall
processing times for these two stages for the test models
shown in Fig. 12. Additionally, we subdivide the dragon
model one and two times in advance to to show the scala-
bility of our method for high patch count subdivision sur-
face models. As expected, performance scales linearly with
respect to the input mesh size since intersections and com-
paction are performed at the face level. While intersection is
more expensive for quadrilateral meshes by a constant factor
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Figure 12: We perform measurements on the shown set
of test models ranging from 36k to 500k input elements
(patches for subdivision models, edges and faces for trian-
gle models). From left to right: frog and dragon subdivision
surface models; kitten, horse and armadillo triangle models.

(more reads for control points per patch are involved), scan
behaves similarly since it scales with the number of input el-
ements. Once deformation events are identified, we trigger
GPU memory management and update the data of affected
faces; i.e., we process edits caused by painting or deforma-
tion.

mesh input intersect scan manage
elements (in ms) (in ms) (in ms)

Dragon* 36 k 0.25 0.025 0.006
Dragon SubD 1* 76 k 0.78 0.028 0.006
Dragon SubD 2* 208 k 2.31 0.049 0.006

Frog* 42 k 0.27 0.028 0.006
Kitten 65 k 0.017 0.038 0.006
Horse 298 k 0.058 0.122 0.006

Armadillo 507 k 0.068 0.203 0.006

Table 1: Performance of brush intersection and multi-scan
kernel on a set of test models shown in Fig. 12. For quadri-
lateral meshes (marked with *) input elements correspond to
the base mesh face count; for triangular meshes, both faces
and edges are considered input elements.

Typically, less than 100 faces are affected by a brush at
the same time in our test scenarios. Overall, the GPU mem-
ory management time was approximately 0.006 ms and the
corresponding time for processing edits was in the range of
0.05 ms.

Finally, dynamic GPU memory management enables the
on-the-fly allocation of high-resolution face textures where
and when needed. In contrast to global parametrization and
texturing approaches, only a subset of the scene faces oc-
cupy GPU memory. Thus, painting and sculpting with very
high detail, as shown in Fig. 13, is easily feasible, even on
hardware with a small memory budget.

Figure 13: Example of dynamic allocation and painting
on the dragon model (left), allowing for local very high-
resolution tile textures as shown in the close-up (right).

9. Conclusion

We presented a system for performing local edits on large
scenes, including both triangle meshes and quadrilateral
Catmull-Clark subdivision surfaces. By using tailored, paral-
lel memory management, local edits are applied within a few
microseconds. This high performance makes our method ap-
plicable even under the highly strict time constraints of video
games, and allows interactive sculpting and painting applica-
tions to edit very detailed meshes with immediate response.

One limitation is that base faces can only be tessellated
up to a maximum tessellation factor. While this is irrele-
vant for most scenarios, the resolution may be insufficient
for large base faces. Therefore, we typically subdivide large
input faces until we consider their size to be small enough.
Another limitation, particularly for triangle meshes, is that
we are forced to use the hardware tessellation patterns. This
occasionally causes problems for poorly shaped input trian-
gles, where larger tessellation factors are necessary to avoid
rendering artifacts. In such cases, we recommend scene pre-
processing to improve the mesh quality; i.e., subdividing
large input triangles and avoiding non-uniform mesh tessel-
lations. However, we see significant potential for improve-
ment in this area. In particular, creating better adaptive tes-
sellation patterns that are able to handle arbitrarily shaped
input triangles is a promising future research direction.
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