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Figure 1: Simulation results of a presbyopic eye (i.e., limited accommodation) using a progressive addition lens (B-spline/sphere): view
through the far vision section (left) and near vision section (right). Defocus is computed approximately and rendertime is less than 32 ms per
frame. The smaller images show effective astigmatism and refractive power of wavefronts at the virtual eye lens, respectively.

Abstract

We present a novel approach that allows real-time simulation of
human vision through eyeglasses. Our system supports glasses that
are composed of a combination of spheric, toric and in particular of
free-form surfaces. In order to obtain eye accommodation we per-
form wavefront tracing on the GPU. Defocus is achieved either by
progressive distributed ray tracing of the eye lens (accurate) or by
approximate blurring according to the obtained wavefront param-
eters. While the first variant is best suited guiding lens manufac-
turers during the design process of lenses, we consider the second
approach ideal for giving customers a real-time impression of cus-
tomized virtual spectacles in eye shops. Additionally, we visualize
refractive power and effective astigmatism of incident wavefronts.
That allows quality assessment of special purpose lenses such as
reading or sport glasses in particular scene environments.
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1 Introduction

Simulating human vision through eyeglasses is important and ben-
eficial for both spectacle lens manufactures and opticians. On the
one hand, such a simulation allows verifying geometrical proper-
ties of eyeglasses during the lens design process without actually
cutting physical glass. On the other hand, customers in eye shops
can evaluate customized eyeglasses before giving the production
order. In this paper we present a solution that serves both of these
purposes. Thereby the main focus of this work lies on progres-
sive addition lenses (PALs) due to their high production costs. The
simulation process for those glass types is particularly challenging
since they consist of relatively complex free-form (typically bicubic
B-splines) surfaces. However, we also support standard eyeglass
lenses composed only of spheric and toric surfaces.

Our simulation system allows a user in a virtual scene environment
to see through an eyeglass and directly observe the simulated image
in real-time. In addition, our approach allows visualizing result-
ing refractive power and effective astigmatism for a given eyeglass,
scene environment and eye lens. This is particularly useful for spe-
cial purpose lenses such as reading or sport glasses.

First, we determine the accommodation of the virtual eye model
using wavefront tracing for each pixel of the result image. Thus,
the obtained eye accommodation parameters correspond to a real
human eye lens while scanning the field of view. Next, we compute
defocus either accurately by progressive distributed ray tracing or
approximately by filtering with respect to the traced wavefronts and
the specific eye lens parameters. In contrast to previous methods we
directly employ the original lens geometry (e.g., bicubic B-splines)
and thus avoid artifacts caused by intermediate triangulation. Fur-
ther, all operations such as wavefront and ray tracing are executed
on the GPU in order to achieve real-time framerates even on mid-
range hardware.

To sum up, we propose a novel system that



• simulates human vision through eyeglasses on the GPU

• supports all common types of spectacles

• uses the original analytic lens geometry

• visualizes resulting defocus and optical properties

• achieves real-time performance

2 Previous Work

Simulation of Human Vision: The first step of human vision
simulation is to determine the eye accommodation. Therefore,
Mostafawy et al. [1997] introduce the virtual eye that approximates
its accommodation by taking only the distance of objects into ac-
count. A more elaborate approach to obtain the eye accommoda-
tion is wavefront tracing [Kneisly et al. 1964], [Stavroudis 1972],
[Mitchell and Hanrahan 1992]. It provides for physically correct re-
sults and supports multi-lens systems. Loos et al. [1998] make use
of this method within the context of PAL optimization. In addition,
they perform distributed ray tracing [Cook et al. 1984] for depth of
field effects and optical distortions. Our approach is similar, how-
ever, instead of an offline simulation process we focus on real-time
image generation on modern GPUs. Kakimoto et al. [2007] pre-
compute wavefront information (i.e., defocus) for every voxel of the
scene; they name it a blur field. They displace vertices according to
the blur field at runtime and obtain defocus by blending several ren-
derings with distinct displacement seeds together. Their approach
works within the rasterization pipeline since they use an environ-
ment map for refraction operations. This method can be extended
by employing the concept of conoid tracing [Kakimoto et al. 2010]
which accelerates the blur field generation. Compared to their ap-
proach we do not rely on coarsely discretized precomputed wave-
front data. Instead we perform wavefront tracing at runtime and
obtain accurate results by taking the analytic lens geometry (e.g.,
bicubic B-splines) into account.

Barsky [2004] also employs the concept of wavefronts. Wavefront
data from human subjects is physically measured and used to render
vision-realistic images.

GPU Ray Tracing: Ray tracing [Whitted 1980] is the key require-
ment for the physically-correct simulation of human vision. One
application of ray tracing is the tracing of wavefronts since wave-
fronts are rays with additional payload such as principal curvatures
and directions. Another is distributed ray tracing [Cook et al. 1984]
that is the reference method for computing defocus. Recent devel-
opment in graphics hardware makes GPUs attractive for ray trac-
ing due to their computational capabilities. Aila and Laine [2009]
demonstrate how to realize a ray tracer on modern GPUs. NVIDIA
employs their method in its GPU ray tracing engine OptiX [Parker
et al. 2010]. We use OptiX for our simulation system since it al-
lows customized ray-object intersections. In addition, it provides
for fast acceleration structure construction and efficient traversal on
the GPU. With OptiX it is also feasible to define rays with cus-
tomized payload (required for wavefront parameters).

3 Eyeglass Description

A real eyeglass consists of a homogeneous glass-like material with
a particular refraction index and a specific glass thickness. The op-
tical properties of eyeglasses are defined through a front and back
lens surface. The side of the eyeglass is obtained by the glass diam-
eter and the spectacle frame. However, for our simulation we ig-
nore the frame since it does not contribute to the optical properties
of the eyeglass. The front and back surface of the eyeglass are ei-
ther spheric, toric or free-form. While a spheric surface is defined

by a radius r (and the glass thickness), a toric surface is given by
an inner radius r and an outer radius R. Typically, free-form lens
surface are uniform bicubic B-splines defined by a regular control
point grid. Progressive addition lenses (PAL) are composed of at
least one free-form surface.

Our system directly incorporates the original geometric design that
is used to manufacture the lens for subsequent simulation. That
allows us to define eyeglasses for all common visual defects by
selecting an appropriate front and back face for the lens:

• Hyperopia: spheric + spheric (positive/convex)

• Myopia: spheric + spheric (negative/concave)

• Astigmatism: toric + spheric

• Presbyopia: free-form + spheric/toric

Please note that bifocal lenses (e.g., lenses which are composed
of surfaces that have two distinct refraction properties) can be also
used to correct Presbyopia. However, nowadays bifocal lenses have
been mostly replaced by PALs, which have superior optical prop-
erties. Due to their obsolescence we do not examine bifocal lenses
explicitly.

4 GPU Ray Tracing and Intersection Tests

For computing both eye accommodation and defocus we need to
perform ray tracing. Therefore, we use NVIDIA OptiX [2010] that
gives us the flexibility to customize intersection tests for different
primitives in a ray intersection program. Furthermore, acceleration
structures such as kD-trees or BVHs are built according to a user-
provided bounding box program.

4.1 Ray Primitive Intersections

Since we use triangle meshes to represent scene environments, we
perform standard ray-triangle intersections in order to determine
ray-scene hit points.

Spheric and toric eyeglass surfaces are handled by considering the
respective analytic surface equation. In the case of a sphere we
need to solve a quadratic equation that is obtained by putting the
ray equation ~r = ~o + t~d into the implicit form of the sphere
x2 + y2 + z2 = r2. The torus is treated in the same way using
its implicit form (x2 + y2 + z2− r2−R2)2 + 4R2(z2− r2) = 0.
In order to find the roots of this degree 4 polynomial, we employ
the iterative root finding algorithm proposed by Bairstow [1920].
Note that a lens surface only corresponds to a small section of the
sphere or torus. We define the spheric or toric section using an addi-
tional cutoff parameter, respectively. In order to optimize primitive
bounds we take the cutoff into account during acceleration structure
construction; i.e., in the bounding box program.

Handling the free-form surfaces is less trivial since they consist of
a larger and more complex data set. These lens surfaces are defined
by a (potentially non-uniform) bicubic B-spline patch consisting of
up to 100 × 100 control points and a corresponding knot vector.
In order to ray trace such a surface efficiently we use the algorithm
of Boehm [1980] to convert the spline into multiple Bézier patches
in a preprocess. Thus, we obtain tight bounds (in the bounding
box program) for each Bézier patch due to the convex hull prop-
erty. These bounds are then used to construct a BVH comprising
all patches obtained from the original B-spline of the lens surface.
At runtime, if a ray hits a patch’s bounding box, we determine an
accurate hit point by taking the parametric patch representation into
account. Therefore, we represent each ray as the intersection of two
planes with normal vectors ~N1 and ~N2 being perpendicular to the



ray direction (see [Martin et al. 2000], [Geimer and Abert 2005],
[Abert et al. 2006]). In order to find the intersection point between
the ray and the parametric surface patch S(u, v), we determine the
roots of

R(u, v) =

(
~N1 · (S(u, v)− ~o)
~N2 · (S(u, v)− ~o)

)
where ~o is the ray origin. Therefore, we employ the iterative New-
ton method using the domain center of the respective patch (i.e.,
(u, v)T = (0.5, 0.5)T ) as a start value:(

un+1

vn+1

)
=

(
un
vn

)
− J(un, vn)−1 ·R(un, vn),

where J is the Jacobian of R, given by

J(u, v) =

(
~N1 · Su(u, v) ~N1 · Sv(u, v)
~N2 · Su(u, v) ~N2 · Sv(u, v)

)
.

Due to numerical issues, previous methods often have problems
when rays hit parametric surfaces in a tangential manner. Thus,
they often require a large number of Newton iteration steps. Our
approach does not suffer from these problems since rays typically
hit eyeglass surfaces almost orthogonally. Hence, we require no
more than 3 iteration steps in order to obtain accurate hit points.

One of the key features of ray tracing the analytic eyeglass sur-
faces is that we are able to directly obtain first and second order
derivatives. That allows us not only to compute surface normals
(required for refraction), but also to determine principal curvatures
and their directions using the first and second fundamental form
(see [Do Carmo 1976]).

I =

(
Su(u, v) · Su(u, v) Su(u, v) · Sv(u, v)
Su(u, v) · Sv(u, v) Sv(u, v) · Sv(u, v)

)

II =

(
Suu(u, v) ·N(u, v) Suv (u, v) ·N(u, v)
Suv (u, v) ·N(u, v) Svv (u, v) ·N(u, v)

)
The principal curvatures κS1 and κS2 of the surface are given by
κS1,2 = H ±

√
(H2 −K), where K = det(II)

det(I)
and H = 0.5 ·

trace(I−1II) are Gaussian and mean curvature, respectively. The
corresponding directions of principal curvature are the columns of
II−κi ·I. More precisely, these are their coefficients with respect to
the tangent vectors span{Su(u, v), Sv(u, v)} ∈ R3 . We require
both principal curvatures and directions in order to compute the
accommodation of the eye lens (see Section 5).

Please note that once a hit point on a lens surface is determined,
a refraction ray is constructed according to the surface normal and
refraction index. Since OptiX supports recursive ray tracing, sec-
ondary rays can be directly cast in the closest hit program (this pro-
gram is executed automatically once a hit point is found).

4.2 Scene Graph

The scene graph features we require to represent virtual environ-
ments are provided by OptiX [Parker et al. 2010]. It is crucial for
our system to move around freely in a scene at runtime and ren-
der eyeglasses in front of the camera independently at the same
time. Therefore, eyeglass and scene geometry are represented as
two scene graph nodes that are defined as geometry groups in Op-
tiX. Each of them has a separate acceleration structure that includes
all respective child nodes. While the scene geometry node is di-
rectly linked to the root node, root and eyeglass node are linked

together with a transform node that allows operations to be applied
on the eyeglass exclusively. On top of the scene graph we build
a global acceleration contained by the root. It is updated every
frame due to the dynamic transform operation of the eyeglass. The
eyeglass node itself has two child nodes containing the front and
back lens surface (those can be either spheric, toric, or free-form).
Within OptiX these are realized as geometry instances and thus di-
rectly bound to the underlying geometry. Since a scene typically
consists of multiple objects, the scene environment node has a cor-
responding number of children (those are also geometry instances).
In order achieve to real-time performance we consider scene objects
to be static. Thus, we build a highly-efficient kD-tree including all
scene geometry (but not eyeglass lens surfaces). This is shared by
all scene objects without the need of costly dynamic updates. In
the end, the design of our scene graph allows eyeglass (corresponds
to eye movement) and the scene geometry (corresponds to head or
user motion) to be moved independently at runtime. An overview
of our scene graph is shown in Figure 2.
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Figure 2: Scene graph of our rendering system realized in OptiX:
the lens transform is applied at runtime and thus allows dynamic
transformation of the eyeglasses; i.e., an user is allowed to move its
head, eyes or eyeglasses arbitrarily.

5 Eye Accommodation Using Wavefront
Tracing

In reality, if the eye focuses on a particular object, the eye lens ac-
commodates accordingly. In order to simulate this effect, we com-
pute the accommodation of the virtual eye lens accordingly. There-
fore, we employ wavefront tracing [1972] similar as proposed by
Loos et al. [1998]. A wavefront along a ray can be described by its
normal ~n, that is equivalent to the direction ~d of the corresponding
ray, the principal curvatures κ1, κ2 and the principal directions ~e1,
~e2. In the following sections we describe wavefront transformations
and wavefront tracing.

5.1 Wavefront Spread in Homogeneous Media

A wavefront passing through homogeneous media has constant
principal directions; thus ~e1 and ~e2 remain unchanged. However,
its principal curvatures κ1, κ2 are transformed according to the ray
length t:

κ′i =
κi

1− t · κi
Since this transformation only depends on the ray parameter t, we
directly transform the wavefront in the respective ray intersection
program.

5.2 Wavefront Transformation at Optical Boundaries

In order to transform a wavefront W at an optical boundary, we
determine the normal ~Ns, principal curvatures κs1, κs2 as well as the



principal directions ~es1, ~es2 of the transition point of the lens surface
S. Since we use analytic lens surfaces, we obtain these parameters
using differential geometry formulae (see Section 3).

At optical boundaries wavefronts are transformed according to the
two corresponding indices of refraction η1 and η2. Then, the nor-
mal ~N ′ of the transformed wavefront W ′ is a linear combination
~N ′ = µ ~N + γ ~Ns with ~N being the normal before the refraction
and ~Ns the corresponding surface normal. With Snell’s law we ob-
tain µ = η1

η2
and γ = −µ cosφ+ cosφ′ with φ being the angle of

incidence and φ′ being the angle of refraction. Next, we choose a
common unit tangent vector ~ξ of the wavefront W and the surface
S as well as another unit tangent vector ~η of S that is orthogonal to
~ξ. Then we compute the angle θ between ~ξ and the first principal
direction ~e1 on W , i.e.,

~ξ = cos θ~e1 − sin θ~e2, ~η = sin θ~e1 + cos θ~e2.

The curvatures κξ and κη on W in direction ~ξ and ~η are then given
by Euler’s formula [1972]:

κξ = κ1 cos2 θ + κ2 sin2 θ

κη = κ1 sin2 θ + κ2 cos2 θ

κξη = (κ1 − κ2) cos θ sin θ

We compute the directional curvatures κsξ, κsη and κsξη on S anal-
ogously. Now, the curvatures κξ and κsξ share the same direction
(this also applies to κη and κsη). This allows us to compute the
curvatures for these directions after refraction:

κ′ξ = µκξ + γκsξ

κ′η = µκη
cos2 φ
cos2 φ′ + γκsη

1
cos2 φ′

κ′ξη = µκξη
cosφ
cosφ′ + γκsξη

1
cosφ′

In order to represent the wavefront after refraction we invert the
Euler formula to obtain the transformed principal curvatures κ′1 and
κ′2:

θ′ = 1
2

tan−1 2κ′
ξη

κ′
ξ
−κ′η

κ′1 = 1
2
(κ′ξ + κ′η +

κ′
ξ−κ

′
η

cos 2θ′ )

κ′2 = 1
2
(κ′ξ + κ′η −

κ′
ξ−κ

′
η

cos 2θ′ )

With θ′ we determine ~e′1 and ~e′2 of W ′ accordingly.

5.3 Wavefront Tracing

For a single point on the retina (i.e., a pixel), wavefront tracing
involves two steps. First, we trace a ray from the center of the re-
spective pixel through the center of the pupil (i.e., eye lens) using
the thin lens model [Hecht and Zajak 2002]. This ray will be re-
fracted once at the back surface and once at the front surface of the
eyeglass lens until a scene object is hit (see Section 4.1). Second,
once a scene hitpoint is determined, a spheric wavefront is initiated
at that point and backtraced along the ray.

Since the wavefront is spheric when it is initiated, ~e1, ~e2 are arbi-
trary. However, we ensure that ~e1 · ~e2 = ~e1 · ~n = ~e2 · ~n = 0.
When the wavefront hits the front surface of the eyeglass the prin-
cipal curvatures are given by the wavefront sphere radius; thus
κ1 = κ2 = 1

t
. At that point the wavefront is transformed us-

ing the transition rules for wavefronts at optical boundaries (see

Section 5.2). In our simulation system, that uses OptiX, this is ap-
plied in the closest hit program of the lens surface. The transformed
wavefront is then traced through the eyeglass until the back surface
is hit. Thereby, the wavefront sustains another transformation ac-
cording to its spread in homogenous media (see Section 5.1). When
the wavefront hits the back surface of the eyeglass the wavefront is
transformed in the same way as for the front surface in the respec-
tive closest hit program. After that the wavefront is further traced
and passes the eye lens where it is not transformed due to the thin
lens property, and eventually hits the retina. However, in order to
compensate for the spread in homogeneous media, we apply the re-
spective lens transform. An overview of the wavefront route and
the corresponding transform operations is shown in Figure 3.

𝑾 𝑾′ 
𝑾′′ 

Figure 3: Wavefront tracing for an eye-eyeglass-object setup: once
the ray-object hitpoint is determined, a spheric wavefront is ini-
tiated at the intersection point; then the wavefront is backtraced
along the ray. Thereby, wavefront parameters are updated accord-
ing to the wavefront transformations for homogeneous media and
optical boundaries.

5.4 Eye Model and Accommodation

Once we obtain the parameters of the wavefront that hits the eye
lens we need to employ an appropriate eye model in order to deter-
mine its accommodation. We assume a spherical eye with diameter
l and a lens aperture size of a. Typically l is about 25mm and a is
about 3.5mm, however, we can easily adjust these parameters cor-
responding to a certain user and/or a particular lighting condition
that affects a. They eye lens itself is characterized by two refractive
powers Qmin,1 and Qmin,2 (corresponding to the respective princi-
pal directions of the lens) in relaxed state (i.e., no accommodation)
and the orientation of the corresponding focal lines l1 and l2. Please
note that for a non-astigmatic eye Qmin,1 = Qmin,2 and thus the
two focal planes f1 and f2 are identical. In addition, the eye can
accommodate by ∆Q to achieve an overall refraction Q:

Q =
Qmin,1 +Qmin,2

2
+ ∆Q

For given refractive powers Qmin,1 and Qmin,2 we employ the
mean curvature transformation by a thin lens with refractive power
P (see [Loos et al. 1998])

κ′1 + κ′2
2

=
κ1 + κ2

2
+ P

we derive ∆Q based on the incident wavefrontW ′′ with curvatures
κ′′1 and κ′′2 at the eye lens

∆Q =
1

l
− κ′′1 + κ′′2

2
− Qmin,1 +Qmin,2

2

Further, we clamp ∆Q according to the maximum eye accommoda-
tion ∆max of a particular user: ∆Q = max(min(∆Q,∆max), 0).



If ∆Q was not in the interval of [0,∆max] before, the specific eye
lens was not capable of accommodating properly causing a visual
defect.

6 Defocus Computation and Visualization

In this section we show how to visualize the results of wavefront
tracing (see Section 5). Further, we demonstrate how to use the
wavefront parameters in order to compute defocus for a particular
eye. This is achieved either by distributed ray tracing or approxi-
mate blurring.

6.1 Visualizing Power of Refraction and Effective
Astigmatism

In order to give a meaningful statement about the visual quality of
spectacles we visualize power of refraction P and effective astig-
matism A of the eyeglass (see Figure 4). However, it is even more
important knowing these parameters for the wavefronts incident at
the eye lens for a particular scene environment. That is ideal suited
for validating the properties of glasses designed for specific pur-
poses; e.g., sport glasses, reading glasses etc.. Wavefront tracing
allows us to directly determine both power of refraction P and ef-
fective astigmatism A given by the wavefront W ′′ at the eye lens.
Those are typically measured in Diopter (m−1) and are given by
the wavefront’s principal curvatures κ′′1 and κ′′2 :

P =
κ′′1 +κ′′2

2

A = κ′′1 − κ′′2

Since we trace a wavefront for every point on the retina (i.e., every
pixel), we visualize P and A as a 2D image, respectively. There-
fore, we employ the HSV color model and map these scalar to the
hue and set saturation as well as value to 1. An example of this
visualization is shown in Figure 5.

6.2 Defocus Computation using Distributed Ray Trac-
ing

In Section 5.4 we determine the eye accommodation ∆Q by con-
sidering the wavefronts W ′′ at the eye lens. It is important to note
that we obtain a different ∆Q for every pixel on the screen. That
corresponds to scanning the field of view and accommodation for
every discrete viewing point (i.e., pixel).

Now, we use this information in order to compute defocus. There-
fore, we employ distributed ray tracing [Cook et al. 1984] to simu-
late the eye lens. We trace multiple sample rays per pixel to deter-
mine the final color of an image point. In order to maintain interac-
tivity, we perform progressive distributed ray tracing: only a single
sample ray is traced per frame and pixel; samples are distributed
temporarily over multiple frames.

Non-astigmatic eye: In the case of an non-astigmatic eye, the focal
plane f is given by the lens diameter l and the power of refraction
of the eye Q (cf. Section 5.4): f = 2

κ′′
1 +κ′′2

. Virtual object points
~x are then obtained by rays through the center of the eye lens due
to the thin lens model. Then we distribute samples ~si on the eye
lens with respect to its aperture size a and construct corresponding
sample rays ~ri = ~si + λ(~x − ~si). The final color is then given by
the average color of all sample rays ~ri. If all rays hit the same scene
point, the result is sharp; otherwise it is blurred.

Astigmatic eye: In the case of an astigmatic eye, the lens is spec-
ified by two distinct (minimum) powers of refraction Qmin,1 and
Qmin,2 and the orientation of the focal lines l1 and l2. Based on

∆Q this leads to two separate focal planes f1 and f2 and two vir-
tual object points ~x1 and ~x2. The two points ~x1 and ~x2 then define
the focal lines l1 and l2 according to the given orientation. We then
distribute samples ~si on the eye lens with respect to its aperture
size a. Now, sample rays are constructed, such that they have a
~si as origin and intersect both focal lines l1 and l2. The result of
all sample rays determines the final color of a pixel. Please note
that the astigmatic case generalizes the non-astigmatic case; that is
given if Qmin,1 = Qmin,2 and thus f1 = f2.

6.3 Defocus Computation using Approximate Blurring

In order to achieve real-time framerates we employ an approxi-
mate depth of field algorithm [Riguer et al. 2003] (a survey of some
real-time depth of field techniques is provided in [Demers 2004]).
Therefore, we add a color parameter to the wavefront. This allows
obtaining wavefront and color information by tracing a single ray
per pixel. At the eye lens we transform the wavefront (as shown
in Section 5.2) into the space of the principal directions of the eye
lens using Euler’s curvature formula [1972]. The principal direc-
tions of the eye lens are given by the orientation of its focal lines
l1 and l2. This provides for curvatures κl1 and κl2 which define
the radii r1 and r2 of the ellipse of confusion. Finally, we use an-
other OptiX kernel that applies defocus to the result image (i.e., the
obtained color values) considering the radii and the orientation or
focal lines. There we distribute filter taps (number depends on the
ellipse size) within the ellipse of confusion and weight them accord-
ing to a multivariate Gaussian distribution. Additionally, we elimi-
nate color leaking of sharp objects by weighting filter taps accord-
ing to their depth and blur values. Note that in the non-astigmatic
case the ellipse of confusion becomes a circle with r = r1 = r2.

Compared with the accurate variant of Section 6.2, this only pro-
vides an approximate solution. However, the performance is supe-
rior since only a single primary ray is required per pixel. While
the defocus computation for a particular pixel is approximate, the
location of defocus is still physically correct since it is based on
wavefront tracing. We consider this particularly useful for an in-
teractive eyeglass simulator that is designed to assess the quality of
eyeglasses. There it is more important being able to locate defocus,
rather than to compute its exact value.

7 Results

Our implementation uses NVIDIA OptiX 2.5.1 running on Win-
dows 7. We tested our implementation on a NVIDA GTX 480 that
is a two-year-old midrange GPU. Performance measurements are
provided in frames per second and account for all runtime overhead
including GUI display. In order to test our simulation system we
use eyeglasses that are composed of spheric, toric and free-form
surfaces. While spheric and toric surfaces have a trivial definition,
we use an uniform B-spline surface that consists of 50 × 50 con-
trol points to describe a free-form surface. The optical properties
of such a B-spline eyeglass, namely effective astigmatism and re-
fractive power, are shown in Figure 4. Note that these parameters
affect wavefront tracing, however, the wavefront parameters at the
eye lens (see Section 6.1) are a distinct measure since they vary
with the scene environment.

Wavefront tracing and visualization: For the wavefront tracing
process we shoot a single primary ray per pixel. Each ray will then
be refracted at both the back and front surface of the eyeglass. Thus,
three rays need to be traced per pixel before hitting an object. A vi-
sualization of the wavefront parameters (effective astigmatism and
power of refraction) at the eye lens is depicted in Figure 5. These
parameters vary within a scene environment and provide informa-
tion about the respective scene and lens setup. This is particularly



Figure 4: Effective astigmatism (left) and refractive power (right)
of a typical progressive addition lens. The section for near vision is
located at the bottom center and is relatively small; the far vision
area is larger and located at top of the lens.

useful, when designing special purpose eyeglasses such as reading
or sport glasses.

Figure 5: From left to right: view through progressive addition lens
using a pinhole camera; visualization of the effective astigmatism of
the wavefront at the eye lens; visualization of the refractive power
of the same wavefront.

Defocus computation and simulation results: Defocus is ob-
tained either exactly by progressive distributed ray tracing or ap-
proximately by screen space filtering (see Section 6). Figure 6
shows a comparison between those two approaches where an eye
model with limited accommodation as well as a spheric eyeglass
is used. Both variants achieve similar visual quality, however, the
exact approach requires multiple frames in order to sample the eye
lens.

The results of our eyeglass simulation are shown in Figure 1. There-
fore, we use a progressive addition lens as an example for a partic-
ularly challenging eyeglass. In addition, we limit the accommo-
dation capability of the virtual eye lens. The two images depict
near and far vision examples, respectively. This corresponds to real
eye movement where particular regions of interest are being looked
at. The usage of progressive addition lens demonstrates that focus
and defocus are depending on both, astigmatism and the ability of
the eye to accommodate appropriately. It is interesting to note that
large areas of the result images are blurred, even though in reality
the human brain manages to compensate for. We have also tested
our simulation system for a variety of simpler eyeglasses (such as
spheric, toric), however, we omitted the results due to reason of
space.

Performance: The performance for our simulation system is
shown in Table 1. In order to obtain the timings, we use the car
scene environment of Figure 1 that consists of 300K triangles. For
the B-spline lens surface, we employ the same lens design as shown
in Figure 4. Performance measurements are provided in frames per
second and resulting images have a resolution of 1024× 1024 pix-
els. Since our approach is mainly based on ray tracing, the perfor-
mance scales linearly with respect to the screen resolution. Each
row of Table 1 corresponds to a particular eyeglass design that con-

Figure 6: View on a text using a (positive) spheric eyeglass. The eye
that has limited accommodation; thus, only mid-range distances
are in focus. The right-hand image is rendered using distributed
ray tracing and the left-hand one is obtained using the approximate
depth of field variant. While the quality of both images is similar,
the accurate variant requires considerably more computational ef-
fort.

Performance (fps) ADOF VIS PIN DOF
No Lens 66.5 70.5 84.2 83.5*

Sphere/Sphere 42.5 45.6 56.1 55.5*
Sphere/Torus 35.5 38.7 43.5 43.1*

B-spline/Sphere 31.7 32.5 38.2 37.5*
B-spline/Torus 28.1 28.8 31.6 30.8*

Table 1: Performance measurements in frames per second for dif-
ferent eyeglass compositions. Eyeglasses consist of two surfaces
which are either spheric, toric, or free-form. Timings are provided
for computing eye accommodation and approximate defocus com-
putation (ADOF); computation and visualization of incident wave-
fronts at the eye lens (VIS); ray tracing the scene with a pinhole
camera model; and progressive distributed ray tracing. Note that
ADOF is our default method and DOF requires multiple frames to
obtain defocus.

sists of two surfaces which are either spheric, toric, or free-form.
Each column of the table depicts the performance of a specific ren-
dering type: ADOF is computing the eye accommodation using
wavefront tracing and approximating defocus by screen space fil-
tering. Since the visual quality of ADOF is similar to that of dis-
tributed ray tracing (see Figure 6), we consider ADOF the default
simulation variant. VIS refers to wavefront tracing and subsequent
visualization of the wavefront parameters (see Figure 5). PIN is ray
tracing the scene using a pinhole camera model, with neither wave-
front tracing nor defocus computation. While this is an artificial
lens design, it provides an upper bound for the performance. DOF
stands for rendering a single frame using progressive distributed ray
tracing. In order to obtain the correct defocus multiple frames need
to be rendered. However, it is possible to move around freely in
real-time. Defocus computation starts when user interaction stops.
In the end all variants achieve real-time framerates, for all possible
eyeglass compositions. Please note that these numbers correspond
to mid-range hardware and our simulation would be considerably
faster on high-end GPUs.

8 Conclusion and Future Work

We have presented a novel system that allows real-time simulation
of human vision through all common types of eyeglasses. Since our
approach works entirely on the GPU, we achieve real-time framer-
ates which allows a user to interactively navigate in virtual envi-
ronments. In contrast to previous methods we directly ray trace



analytic lens geometry (e.g., bicubic B-splines) without intermedi-
ate triangulation. Thus, we obtain physically correct results and
keep memory footprint low. To sum up, our system is ideally suited
for assisting during a lens design process as well as providing an
interactive feedback tool for eye shop customers.

In the future we would like to incorporate contact lenses into our
simulation system. This is particularly challenging since contact
lenses are very thin which makes the ray tracing process difficult
due to numerical issues. In addition, our system could be integrated
into virtual reality glasses. In combination with head and eye track-
ing this could enhance the quality of visual impression and improve
upon realism.
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